Effective K-stability of spherical varieties Talk 2: K-stability criterion and close to Fano varieties

Thibaut Delcroix

Université de Montpellier

Motivation: YTD conjecture(s)

Existence of a canonical Kähler metric in $c_1(L)$ should be equivalent to an algebro-geometric notion of stability for (X, L)

Major examples of such results or partial results:

- I Kähler-Einstein metrics on Fano manifolds [Chen-Donaldson-Sun, Tian, 2015]
- **2** coupled *g*-solitons [Li-Han]
- **3** existence cscK (extremal) \Rightarrow uniform K-stability [Berman-Darvas-Lu 2020]
- From the analytical point of view, [Chen-Cheng 2021] proved that coercivity (modulo automorphisms) of the Mabuchi functional implies existence of cscK metrics
- **5** [Li 2022] some algebraic notion close to uniform K-stability \Rightarrow existence cscK

What is the "best" notion of K-stability applicable? (especially in direction K-stability \Rightarrow existence)

Explicit K-stability

Assume (X, K_X^{-1}) Fano.

- [[Li-Xu 2011] To test K-stability, enough to consider special test configurations
- 2 [Li, Fujita] Valuative criterion
- 3 [Abban-Zhuang] approach to get explicit K-stability

Conjecture

```
Assume now that X is "close to Fano".

\exists (geometrically meaningful) neighborhood \mathcal{N} of c_1(X) st \forall L \in \mathcal{N},

(X, L) is uniform K-stable iff it is K-stable wrt special test configurations.
```

Goal today: partial results in this direction for spherical varieties.

[Donaldson 2009] for toric surfaces, arbitrary L, special t.c. are not enough

Spherical case

Theorem [Odaka, appendix to [D 2023], based on [Li 2022]]

A polarized G-spherical manifold (X, L) admits a cscK metric if and only if it is G-uniformly K-stable.

Theorem [D 2023]

Convex geometric translation of *G*-uniform K-stability for polarized *G*-spherical varieties.

Theorem [D 2023]

A rank one polarized *G*-spherical manifold (X, L) admits a cscK metric if and only if it is K-stable with respect to *G*-equivariant **special** test configurations. The latter translates into a very simple single combinatorial condition.

Later: more on the conjecture.

Combinatorial condition

(X, L) be a polarized rank one *G*-spherical manifold, with moment polytope Δ . $\chi \in \Delta$, σ generator of *M* which evaluates non-negatively on the valuation cone,

$$\Delta = \{\chi + t\sigma \mid t \in [s_-, s_+] \subset \mathbb{R}\}$$

$$P(t) = \prod_{lpha \in \Phi_X^+} rac{\langle lpha, \chi + t\sigma
angle}{\langle lpha, arpi
angle} \qquad \qquad Q(t) = \sum_{lpha \in \Phi_X^+} rac{\langle lpha, arpi
angle}{\langle lpha, \chi + t\sigma
angle} P(t)$$

For a continuous function $g:[s_-,s_+]
ightarrow\mathbb{R}$, let

$$\mathcal{L}(g) = g(s_{-})P(s_{-}) + g(s_{+})P(s_{+}) - \int_{s_{-}}^{s_{+}} 2g(t)(aP(t) - Q(t))dt$$

where *a* is the constant such that $\mathcal{L}(1) = 0$. Then there exists a cscK metric iff

- $\mathcal{L}(id) > 0$ if X is not horospherical,
- $\mathcal{L}(id) = 0$ if X is horospherical.

Test configurations

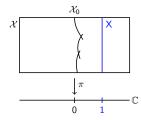
A test configuration for (X, L) consists of the data of

- **1** a normal variety \mathcal{X} ,
- **2** a \mathbb{C}^* -action on \mathcal{X} ,
- **3** a flat projective, \mathbb{C}^* -equivariant morphism $\pi: \mathcal{X} \to \mathbb{C}$,
- **4** a π -ample line bundle \mathcal{L} on \mathcal{X} ,

such that

•
$$(\mathcal{X}_1, \mathcal{L}_1) \simeq (X, L^r)$$
 for some $r \in \mathbb{Z}_{>0}$,

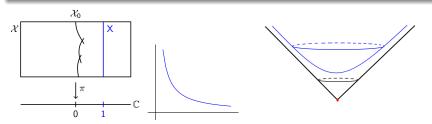
where $(\mathcal{X}_1, \mathcal{L}_1)$ denotes the (scheme-theoretic) fiber of π above $1 \in \mathbb{C}$, equipped with the restriction of \mathcal{L} .



The central fiber $(\mathcal{X}_0, \mathcal{L}_0)$, equipped with an action of \mathbb{C}^* , is the important data. **Upshot:** more symmetries, more singularities will think of \mathcal{X}_0 as a \mathbb{C}^* -stable divisor in \mathcal{X} .

Examples

- ▶ P¹ degenerates to two intersecting lines (several irreducible components) X = {([x : y : z], t); xy - tz² = 0}
- ▶ \mathbb{P}^1 degenerates to a double line (non-reduced) $\mathcal{X} = \{([x : y : z], t); txy - z^2 = 0\}$
- \blacktriangleright $\mathbb{P}^1 imes \mathbb{P}^1$ degenerates to a weighted projective space (normal, but singular)



Special test configurations

Special test configuration: A t. c. is *special* if \mathcal{X}_0 is normal

Product test configuration: A t. c. is *product* if \mathcal{X}_0 is isomorphic to X. \mathbb{C}^* -action on $(X, L) \Rightarrow$ product test configuration: $\mathcal{X} = X \times \mathbb{C}, \pi$ projection to \mathbb{C} , action of \mathbb{C}^* given by $t \cdot (x, s) = (t \cdot x, ts)$ All product test configurations arise from this construction.

Twist of a test configuration: $(\mathcal{X}, \mathcal{L})$ be any *G*-equivariant t. c. $\mu : \mathbb{C}^* \to \operatorname{Aut}^G(X)$ 1psg of *G*-equiv automorphisms of *X*. Over \mathbb{C}^* , family is trivial, can define new \mathbb{C}^* -action on $\mathcal{X} \setminus \mathcal{X}_0 \simeq X \times \mathbb{C}^*$ by

$$t \cdot (x, s) = (\mu(t) \cdot x, ts)$$

action actually extends to \mathcal{X} and defines a new *G*-equivariant test configuration, the **twist** of $(\mathcal{X}, \mathcal{L})$ by μ .

Donaldson-Futaki invariant

$$H^0(\mathcal{X}_0, \mathcal{L}_0^k) = \bigoplus_{j=1}^{d_k} V_{j,k}$$
 decomposition in irreducible \mathbb{C}^* -representations

Each $V_{j,k}$ is of dimension one, and \mathbb{C}^* acts by on it with a weight $\lambda_{j,k}$:

$$z \cdot s = z^{\lambda_{j,k}} s$$

$$rac{\sum_j \lambda_{j,k}}{kd_k} = F_0 + F_1 rac{1}{k} + o(rac{1}{k}) ext{ as } k o \infty ext{ [Donaldson]}$$

Donaldson-Futaki invariant $DF(\mathcal{X}, \mathcal{L}) := -F_1$ **Non-archimedean** *J*-functional $J^{NA}(\mathcal{X}, \mathcal{L}) = \sup\{\frac{\lambda_{j,k}}{k}\} - F_0$ Subtleties:

▶ F_0 depends on the choice of \mathbb{C}^* -linearization of \mathcal{L} (but not F_1 and J^{NA})

▶ *DF* does not vary linearly with base changes $z \mapsto z^m$. Better to work with non-Archimedean Mabuchi functional M^{NA} which is the linear functional which coincide with *DF* when the central fiber is reduced.

(Uniform) K-stability

Definitions

- (X, L) is **K-semistable** if $M^{NA}(\mathcal{X}, \mathcal{L}) \ge 0$ for all test configurations.
- (X, L) is **K-(poly)stable** if $M^{NA}(\mathcal{X}, \mathcal{L}) \ge 0$ for all test configurations, with equality if and only if the test configuration is a product.
- (X, L) is **uniformly K-stable** if there exists a positive constant $\varepsilon > 0$ such that for all test configurations, $M^{NA}(\mathcal{X}, \mathcal{L}) \ge \varepsilon J^{NA}(\mathcal{X}, \mathcal{L})$.
- (X, L) is *G*-uniformly K-stable if $\exists \varepsilon > 0$, for all *G*-equivariant test configurations,

$$M^{NA}(\mathcal{X},\mathcal{L}) \geq \varepsilon \inf_{\mu} J^{NA}(\text{twist of } (\mathcal{X},\mathcal{L}) \text{ by } \mu)$$

Test configurations for spherical varieties

(X, L) polarized G-spherical variety, s B-section of L, div $(s) = \sum_{D} n_{D}D$ and Δ associated polytope (defined by the equations $\rho(D)(m) + n_{D} \ge 0$)

Theorem [D]

- G-equivariant test configurations of (X, L) are in 1:1 correspondence with negative rational piecewise linear convex functions on the moment polytope Δ, whose slopes are in the opposite valuation cone -V of X.
- ▶ special test configurations correspond to linear functions $f \in -V$
- ▶ product test configurations correspond to linear functions $l \in Lin(V)$
- twists correspond to adding a linear function $l \in Lin(\mathcal{V})$.

First key remark: under the action of $G \times \mathbb{C}^*$, the total space \mathcal{X} is still spherical

Convex function associated to a test configuration

Assume $\mathcal{X}_0 = \sum D_j$ is reduced (OK up to base change)

 D_j : prime $G \times \mathbb{C}^*$ -stable divisors in the $G \times \mathbb{C}^*$ spherical variety \mathcal{X} \leftrightarrow primitive elements $(u_j, t_j) \in N \times \mathbb{Z}_{<0}$.

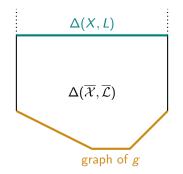
Extend s^r to a $B \times \mathbb{C}^*$ -equiv section of \mathcal{L} using $(\mathcal{X}_1, \mathcal{L}_1) \simeq (X, \mathcal{L}^r)$ and \mathbb{C}^* -action. Associated divisor is of the form

$$r \overline{\operatorname{div}(s) \times \mathbb{C}^*} + \sum_j n_j D_j$$

The PL function associated to $(\mathcal{X}, \mathcal{L})$ is

$$g: x \mapsto \sup \frac{ru_j(x) + n_j}{t_j}$$

Picture



NA functionals

[Donaldson 2002]: Using restriction exact sequences, get

$$\sum_{j,k} \lambda_{j,k} = \dim H^0(\mathcal{X}, \mathcal{L}^k) - \dim H^0(X, \mathcal{L}^{rk})$$

Toric case: all these dimensions may be computed by counting integral points in dilated convex polytope.

Spherical case: add values of a polynomial (using Weyl dimension formula) at integral points in dilated convex polytope

[Khovanski-Pukhlikov 1992]: If the polynomial is homogeneous, defines a valuation on the space of virtual polytopes, in particular, polynomial wrt dilation.

Furthermore, have Minkowski inversion

$$\ominus \Delta = (-1)^{\dim(\Delta)} \operatorname{Int}(-\Delta) = \sum_{F} (-1)^{\dim(F)} (-F)$$

Identifying the coefficients

Toric case:

$$\mathcal{F}(k) := \#(k\Delta \cap \mathbb{Z}^n) = a_n k^n + a_{n-1} k^{n-1} + \cdots$$

First coeff:

$$a_n = \lim_{k \to \infty} \frac{\# k \Delta \cap \mathbb{Z}^n}{k^n} = \operatorname{Vol}(\Delta)$$

where volume is wrt Lebesgue measure normalized by lattice \mathbb{Z}^n . By Minkowski inversion,

$$\mathcal{F}(-k) = (-1)^n a_n k^n + (-1)^{n-1} a_{n-1} k^{n-1} + \dots = \#(k \operatorname{Int}(\Delta) \cap \mathbb{Z}^n)$$

Second coeff:

$$2a_{n-1} = \lim_{k \to \infty} \frac{\mathcal{F}(k) - (-1)^n \mathcal{F}(-k)}{k^{n-1}} = \operatorname{Vol}(\partial \Delta)$$

Spherical case: same idea, get

$$\dim H^{0}(X, L^{k}) = \sum_{\lambda \in M \cap k\Delta} \dim V_{k\chi+\lambda}$$
$$= k^{n} \int_{\Delta} P d\mu + k^{n-1} \left(\frac{1}{2} \int_{\partial \Delta} P d\sigma + \int_{\Delta} Q d\mu\right) + o(k^{n-1})$$

with dim $V_{k\lambda} = k^d P(\lambda) + k^{d-1}Q(\lambda) + \cdots$ given by Weyl dimension formula

NA functionals: conclusion

Set

$$P(x) = \prod_{\alpha \in \Phi_X^+} \frac{\langle x + \chi, \alpha \rangle}{\langle \varpi, \alpha \rangle} \qquad \qquad Q(x) = \sum_{\alpha \in \Phi_X^+} \frac{\langle \varpi, \alpha \rangle}{\langle x + \chi, \alpha \rangle} P(x)$$
$$V = \int_{\Delta} P d\mu \qquad \qquad a = \frac{1}{2V} \left(\int_{\partial \Delta} P d\sigma + 2 \int_{\Delta} Q d\mu \right)$$

Theorem [D]

Let f be the convex PL function associated to $(\mathcal{X}, \mathcal{L})$.

$$M^{NA}(\mathcal{X},\mathcal{L}) = rac{1}{2V}\left(\int_{\partial\Delta} fPd\sigma + \int_{\Delta} f2(Q-aP)d\mu
ight) =: rac{1}{2V}\mathcal{L}(f)$$

and

$$J^{NA}(\mathcal{X},\mathcal{L}) = rac{1}{V} \int_{\Delta} (f-\min f) P d\mu =: rac{1}{V} \mathcal{J}(f)$$

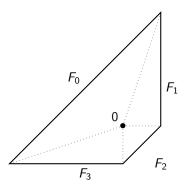
Uniform K-stability of polarized spherical varieties

$$\mathcal{L}(f) = \int_{\partial \Delta} f P d\sigma + \int_{\Delta} f 2(Q - aP) d\mu$$
$$\mathcal{J}(f) = \int_{\Delta} (f - \min f) P d\mu$$

(X, L) is G-uniformly K-stable if and only if there exists $\varepsilon > 0$ such that for all convex PL function f on Δ with slopes in $-\mathcal{V}$,

$$\mathcal{L}(f) \geq \varepsilon \inf_{l \in \mathsf{Lin}(\mathcal{V})} \mathcal{J}(f+l)$$

Towards the conjecture



Choose a point 0 in the interior of Δ , decompose Δ into pyramids T_F with base the facet F and vertex 0, as the facets F vary.

Let u_F denote the primitive outward normal to the facets of Δ , and let n_F be the numbers such that

$$\Delta = \{x \mid u_F(x) \le n_F\}$$

A sufficient condition

Let (X, L) be a polarized G-spherical variety

Theorem

```
Assume that for all F and x \in T_F,
```

$$d_x P(x) + (r+1)P(x) + 2n_F(Q-aP)(x) \ge 0$$

then (X, L) is G-uniformly K-stable if and only if (X, L) is K-stable with respect to special test configurations.

Corollary

Assume that X is smooth. Assume that for all F and $x \in T_F$,

$$d_x P(x) + (r+1)P(x) + 2n_F(Q-aP)(x) \ge 0$$

then there exists a cscK metric in $c_1(L)$ if and only if (X, L) is K-stable with respect to special test configurations.

Sketch of proof

- By approximation, can work with smooth convex functions instead of PL convex functions.
- **2** Normalize functions: work with f smooth convex on Δ , such that $\inf f = 0$ and $d_0 f$ is in a fixed complement subspace \mathcal{W} to $\operatorname{Lin}(\mathcal{V})$. Can always reduce to this by adding an affine function with slope in $\operatorname{Lin}(\mathcal{V})$.
- 3 On normalized functions, G-uniform K-stability writes $\mathcal{L}(f) \geq \epsilon \int_{\Delta} f P d\mu$
- Use divergence formula to transform the integral on the boundary to integrals on the interior of the polytope:

$$\int_{F} fPd\sigma = \frac{1}{n_F} \int_{T_F} \left(P(x) d_x f(x) + rf(x) P(x) + f(x) d_x P(x) \right) d\mu$$

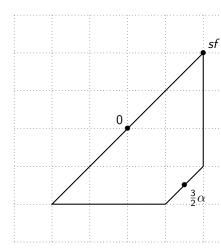
5 Plug into \mathcal{L}

$$\mathcal{L}(f) = \sum_{F} \frac{1}{n_{F}} \int_{T_{F}} (d_{x}f(x) - f(x)) P(x) d\mu + \sum_{F} \frac{1}{n_{F}} \int_{T_{F}} ((r+1)P(x) + d_{x}P(x) - 2n_{F}(aP - Q)(x)) f(x) d\mu$$

An example

Consider the $SL_2 \times \mathbb{C}^*$ -spherical variety Bl_{Q1} Q³. Let α be the unique positive root and f the generating character of \mathbb{C}^* . Up to scaling, the moment polytope of an ample line bundle is as on the right

By the sufficient condition, the associated Kähler class admits a cscK metric if 1,683 < s < 3



Case of Fano toric manifolds

Recover (by same method) a sufficient condition for properness of (modified) Mabuchi functional on toric manifolds [Zhou-Zhu 2008]

Recall condition: for $x \in T_F$,

$$d_x P(x) + (r+1)P(x) + 2n_F(Q-aP)(x) \ge 0$$

In toric case, P = 1, Q = 0, get for any facet F

$$r+1-2n_Fa\geq 0$$

where $r = \dim(X)$

Notable particular case: all *n_F* are equal

All $n_F = 1$ means the polytope Δ is *reflexive* Furthermore, 2a = scalar curvature, which in Fano case, for $L = K_X^{-1}$, is = r the dimension

Thus r + 1 - r = 1 > 0

The condition varies continuously \Rightarrow condition holds on a neighborhood of $c_1(X)$.

Case of close to Fano spherical manifolds

 $\Delta = \Delta(X, K_X^{-1})$, X spherical, some facets do not have $n_F = 1$.

But when a facet does not have $n_F = 1$, then *P* actually vanishes on that facet, and the condition associated to that facet may be written differently (can work as if $n_F = 1$).

Can check that the numerical condition is indeed satisfied for $L = K_X^{-1}$, recover the combinatorial criterion for existence of KE metrics on Fano spherical varieties [D 2020]

Recall conjecture

On a neighborhood of $c_1(X)$, uniform K-stability is equivalent to K-stability with respect to special test configurations.

[D]: proof for large classes of spherical varieties (open orbit affine with trivial Picard group, toroidal horospherical)
 Difficulties: The polynomial is non-negative but vanishes... Need to vary the interior point 0 of the polytope as the Kähler class varies to preserve non-negativity.

Hope for the future:

- 1 Geometrical interpretation of the condition
- 2 proof for all spherical varieties
- other varieties? What is special about spherical?
 (e.g. K_x⁻¹ big, Mori Dream Space,...)