Effective K-stability of spherical varieties

Talk 1: Introduction to spherical varieties
via dimension four

Thibaut Delcroix

Université de Montpellier

Motivation : Toric geometry

Definition

A normal n-dimensional algebraic variety X equipped with an effective action of a torus $\left(\mathbb{C}^{*}\right)^{n}$ is called a toric variety.

1 toric variety $X \leftrightarrow$ fan
[2 polarized toric variety $\left(X^{n}, L\right) \leftrightarrow$ integral polytope $\Delta \subset \mathbb{R}^{n}$
3 Fano toric variety $\left(X, K_{X}^{-1}\right) \leftrightarrow$ reflexive polytope
4 admits a Kähler-Einstein metric $\leftrightarrow \operatorname{Bar}(\Delta)=0$
5 polarized toric variety (X, L) is K -(semi)stable \leftrightarrow explicit linear functional \mathcal{L} is non-negative on convex functions on Δ

Other group actions

X normal complex algebraic variety
O
G connected complex reductive algebraic group
Basic data : complexity and rank
1 complexity of $G \curvearrowleft X:=\min$ codim of an orbit of a Borel subgroup $B \subset G$
2 weight lattice $M:=$ subgroup of weights of rational B-eigenfunctions
3 rank of $G \curvearrowleft X:=$ rank of M
Definition: $G \curvearrowleft X$ spherical variety if complexity $=0$
Theory of spherical varieties: a dictionary, as in the toric case

$$
\text { geometric } \leftrightarrow \text { combinatorial / convex }
$$

[Luna-Vust 83, Brion, Knop,...]

Recollections on reductive groups: root system

$G \supset B$ Borel subgroup of $G, \quad T \simeq\left(\mathbb{C}^{*}\right)^{r}$ a maximal torus of B $\mathrm{X}^{*}(B)=\mathrm{X}^{*}(T):=\left\{\chi: T \rightarrow \mathbb{C}^{*}\right.$ morphism $\} \simeq \mathbb{Z}^{r}$ group of characters $\Phi \subset X^{*}(T)$ root system of $(G, T), \quad \Phi^{+} \subset \Phi$ roots of B.

$$
\begin{aligned}
\mathfrak{g}_{\alpha} & :=\{x \in \mathfrak{g} \mid \forall t \in T, \operatorname{Ad}(t)(x)=\alpha(t) x\} \\
\mathfrak{g} & =\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha} \quad \mathfrak{b}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}
\end{aligned}
$$

Example: GL_{n}, B upper triangular matrices, T diagonal matrices
$\mathrm{X}^{*}(T)$ generated by $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{j}$
Φ is the set of $\alpha_{j, k}: \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{j} / a_{k}$ for $j \neq k$, and $\mathfrak{g}_{\alpha_{j, k}}=\mathbb{C} E_{j, k}$ $\alpha_{j, k} \in \Phi^{+}$iff $j<k$.

First examples of spherical varieties

1 toric varieties are spherical
2 Bruhat decomposition $\Rightarrow G / B$ spherical e.g. $\mathbb{P}^{1}=\mathrm{SL}_{2} / B$
3 if $B \subset P \subset G, G / P$ spherical e.g. ${S L_{3} \circlearrowleft \mathbb{P}^{2}}^{2}$
$4 \mathrm{SL}_{2}$ acts on $S y m_{2}$ by congruences $\Rightarrow \mathrm{SL}_{2} \circlearrowleft \mathbb{P}^{2}$ spherical
5 diagonal action of SL_{2} on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is spherical
6 $\mathrm{SL}_{2} \times \mathbb{C}^{*} \circlearrowleft \mathbb{P}(1,1, k)$ spherical
$7 \mathrm{SL}_{2} \times \mathbb{C}^{*} \circlearrowleft \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(k)\right)$ spherical
These (plus invariant subvarieties) exhaust all 2-dim spherical varieties Higher dimensions?

Low dimensional spherical Fano manifolds

Dimension 3 Fano spherical: [Hofscheier PhD thesis 2015], not available online WIP with Pierre-Louis Montagard: classification of spherical Fano fourfolds Toric varieties:

- dimension 2 well-known
- dimension 3 [Batyrev, Watanabe-Watanabe]
- dimension 4 [Batyrev]
- dimension 5 to 8 by algorithm [Obro]

Only a question about special integral polytopes
Here, first obstacle: determine possible open orbits G / H. Only after, becomes question about special rational polytopes.

Theorem [D.-Montagard, 2023]

Explicit classification of spherical homogeneous spaces of dimension 4.

Strategy for classification of spherical G / H

Standing Assumption: $G=G^{s c} \times\left(\mathbb{C}^{*}\right)^{n}$ with $G^{s c}$ semisimple, simply connected \rightarrow action of $G^{s c}$ on G / H has finite central kernel
\rightarrow action of $\left(\mathbb{C}^{*}\right)^{n}$ on G / H is effective.

Theorem (Brion-Luna-Vust 1986)

Assume $B H / H$ open in G / H. Let $P=\operatorname{Stab}(B H / H)$. There exists a Levi subgroup L of P with connected center C such that $P \cap H=L \cap H$ contains $[L, L]$ and the map

$$
P^{u} \times C /(C \cap H) \rightarrow B H / H, \quad(p, x) \mapsto p \cdot x
$$

is an isomorphism.
In particular,

$$
\operatorname{dim}(G / H)=\operatorname{rank}(G / H)+\operatorname{dim}(G / P)
$$

and under the standing assumption, P does not contain a simple factor of G.

G	$\operatorname{rank}(G)$	G / P	$\operatorname{dim}(G / P)$
SL_{2}	1	\mathbb{P}^{1}	1
SL_{3}	2	\mathbb{P}^{2}	2
SL_{2}^{2}	2	$\mathbb{P}^{1} \times \mathbb{P}^{1}$	2
Sp_{4}	2	Q^{3}	3
SL_{3}	2	W	3
Sp_{4}	2	\mathbb{P}^{3}	3
SL_{4}	3	\mathbb{P}^{3}	3
$\mathrm{SL}_{3} \times \mathrm{SL}_{2}$	3	$\mathbb{P}^{2} \times \mathbb{P}^{1}$	3
SL_{2}^{3}	3	$\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	3
$\mathrm{SL}_{3} \times \mathrm{SL}_{2}$	3	$W \times \mathbb{P}^{1}$	4
$\mathrm{Sp}_{4} \times \mathrm{SL}_{2}$	3	$Q^{3} \times \mathbb{P}^{1}$	4
SL_{4}	3	Q^{4}	4
$\mathrm{Sp}_{4} \times \mathrm{SL}_{2}$	3	$\mathbb{P}^{3} \times \mathbb{P}^{1}$	4
SL_{5}	4	\mathbb{P}^{4}	4
$\mathrm{SL}_{4} \times \mathrm{SL}_{2}$	4	$\mathbb{P}^{3} \times \mathbb{P}^{1}$	4
SL_{3}^{2}	4	$\mathbb{P}^{2} \times \mathbb{P}^{2}$	4
$\mathrm{SL}_{3} \times \mathrm{SL}_{2}^{2}$	4	$\mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	4
SL_{2}^{4}	4	$\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	4

Recall

$$
\operatorname{dim}(G / H)=\operatorname{rank}(G / H)+\operatorname{dim}(G / P)
$$

Consequence: strong restriction on possible G

- If $\operatorname{rank}(G / H)=\operatorname{dim}(G / H)$ then $P=G=\left(\mathbb{C}^{*}\right)^{n}$ and H trivial (toric case).
- If $\operatorname{rank}(G / H)=\operatorname{dim}(G / H)-1$ then $G^{s c}=S_{2}$.
- If $\operatorname{rank}(G / H)=\operatorname{dim}(G / H)-2$ then $G^{s c} \in\left\{\mathrm{SL}_{3}, \mathrm{SL}_{2}^{2}\right\}$.
- If $\operatorname{rank}(G / H)=\operatorname{dim}(G / H)-3$ then $G^{s c} \in\left\{\mathrm{SL}_{4}, \mathrm{Sp}_{4}, \mathrm{SL}_{3} \times \mathrm{SL}_{2}, \mathrm{SL}_{2}^{3}, \mathrm{SL}_{3}\right\}$.
- If $\operatorname{rank}(G / H)=0$ then $H=P$ (homogeneous case)

If $\operatorname{dim}(G / H) \leq 4$, need only consider those $G^{\text {sc }}$.
Furthermore: if $\operatorname{rank}(G / H)=1$, spherical homogeneous spaces classified up to parabolic induction.

Parabolic induction

$$
G / H=\frac{G \times\left(G_{0} / H_{0}\right)}{Q}
$$

under the action $q \cdot(g, x)=\left(g q^{-1}, \pi(q) \cdot x\right)$, for some $\pi: Q \rightarrow G_{0}$ epimorphism from a proper parabolic subgroup Q of G to a connected reductive group G_{0}

Example: $\mathrm{SL}_{2} \curvearrowleft \mathbb{C}^{2} \backslash\{0\}=\mathrm{SL}_{2} /\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$ is obtained by parabolic induction:

$$
Q=\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \quad \pi: Q \rightarrow \mathbb{C}^{*}, \quad\left(\begin{array}{cc}
a & b \\
0 & \frac{1}{a}
\end{array}\right) \mapsto a
$$

Special case: if $G_{0}=\left(\mathbb{C}^{*}\right)^{r}\left(\Leftrightarrow B^{u} \subset H\right)$, say G / H is horospherical.
In general, it is characterized by $Q^{u} \subset H \subset Q$
or even, at the level of Lie algebras $\mathfrak{q}^{u} \subset \mathfrak{h} \subset \mathfrak{q}$

Next step

Will come back to rank one spherical fourfolds later.
Next goal: classify spherical subgroup H of $G=G^{s c} \times\left(\mathbb{C}^{*}\right)^{n}$, with $\operatorname{dim}(G / H) \leq 4$ and $G^{s c} \in\left\{\mathrm{SL}_{2}, \mathrm{SL}_{3}, \mathrm{SL}_{2}^{2}\right\}$

1 Algebraic subgroups of SL_{2} are well-known
2. Lie subalgebras of $\mathfrak{s l}_{3}$ and $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$ up to conjugation have been classified [Douglas-Repka 2016]
\triangleright Determine which correspond to spherical subgroups
\triangleright throw in a torus factor.
Upshot: most spherical homogeneous spaces are obtained by parabolic inductions!
Downside: higher dimension will be a combinatorial nightmare!

Spherical subgroups of $G=S L_{2} \times\left(\mathbb{C}^{*}\right)^{n}$

(Under standing assumption, up to conjugation and exterior automorphism)
■ $H=\left\langle\left[\begin{array}{ll}\bullet & 0 \\ 0 & \bullet\end{array}\right] \times\{1\}, \quad\left(\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], \pm 1,1, \ldots, 1\right)\right\rangle$
2. $H=\left\{\left(\left[\begin{array}{cc}a & 0 \\ 0 & \frac{1}{a}\end{array}\right], a^{-m}, 1 \ldots, 1\right)\right\}$ for some $m \in \mathbb{Z}_{\geq 0}$

3 $H=\left\{\left(\left[\begin{array}{cc}a & b \\ 0 & \frac{1}{a}\end{array}\right], a^{-m}, 1 \ldots, 1\right)\right\}$
4. $H=\left\{\left(\left[\begin{array}{cc}e^{\frac{2 i k \pi}{m}} & b \\ 0 & e^{-\frac{2 i k \pi}{m}}\end{array}\right], 1 \ldots, 1\right)\right\}$

Spherical subgroups of $G=S L_{3} \times\left(\mathbb{C}^{*}\right)^{n}$

ϖ_{j} fundamental weights, χ_{j} projection to j th \mathbb{C}^{*} factor, Q maximal parabolic Assume $\operatorname{dim} G / H \leq 4$ and $\operatorname{Aut}^{G, 0}(G / H) \subset G$.

Up to conjugation and G-equivariant automorphism,
II $n=2, H=\operatorname{ker}\left(m \varpi_{1}+\chi_{1}: Q \rightarrow \mathbb{C}^{*}\right) \cap \operatorname{ker}\left(\chi_{2}: Q \rightarrow \mathbb{C}^{*}\right)$ for some $m \in \mathbb{Z}_{\geq 0}$,
■ $n=1, H=\operatorname{ker}\left(m \varpi_{1}+\chi_{1}: Q \rightarrow \mathbb{G}_{m}\right)$
$3 n=1, H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{2} \varpi_{2}+\chi_{1}: B \rightarrow \mathbb{G}_{m}\right)$
$4 n=0, H=B$
5 $n=0, H=Q$
6 $n=0, H=\left\langle Q^{u}, T\right\rangle$
$7 n=0, H=N\left(\left\langle Q^{u}, T\right\rangle\right)$
$8 n=0, H=S\left(\mathrm{GL}_{2} \times \mathrm{GL}_{1}\right)$ (only case not a parabolic induction)

Spherical subgroups of $G=S L_{2}^{2} \times\left(\mathbb{C}^{*}\right)^{n}$

($\operatorname{dim}(G / H) \leq 4$, up to conjugation and G-equivariant automorphism)
$1 \mathrm{G} / \mathrm{H}$ is obtained by parabolic induction
2 $n=0$ and H is one of the following:
$1 \operatorname{diag}\left(\mathrm{SL}_{2}\right)$
$2 . N\left(\operatorname{diag}\left(\mathrm{SL}_{2}\right)\right)$
3) $T_{1} \times T_{2}$
$4 N\left(T_{1}\right) \times T_{2}$
5 $N\left(T_{1}\right) \times N\left(T_{2}\right)$
${ }_{6}\left\langle T_{1} \times T_{2},\left(\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right)\right\rangle$
$7 \operatorname{diag}\left(B_{1}\right)$
$8 N\left(\operatorname{diag}\left(B_{1}\right)\right)=\left\langle\operatorname{diag}\left(B_{1}\right),\left(I_{2},-l_{2}\right)\right\rangle$
$3 n=1$ and H is one of the following:
$1 \operatorname{diag}\left(\mathrm{SL}_{2}\right) \times\{1\}$
$2 N\left(\operatorname{diag}\left(\mathrm{SL}_{2}\right)\right) \times\{1\}$
$3\left\langle\operatorname{diag}\left(\mathrm{SL}_{2}\right),\left(I_{2},-I_{2},-1\right)\right\rangle$

Parabolic inductions for $G=\mathrm{SL}_{2}^{2} \times\left(\mathbb{C}^{*}\right)^{n}$

11 $n=0, H=B$
2 $n=0, H=B_{1} \times T_{2}$
3 $n=0, H=B_{1} \times N\left(T_{2}\right)$
$4 n=0, H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{2} \varpi_{2}: T_{1} \times B_{2} \rightarrow \mathbb{C}^{*}\right)$
$5 n=0, H=\left\langle T_{1} \times \operatorname{ker}\left(m_{2} \varpi_{2}: B_{2} \rightarrow \mathbb{C}^{*}\right),\left(\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}\xi & 0 \\ 0 & \xi^{-1}\end{array}\right]\right)\right\rangle$
б $n=1, H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{2} \varpi_{2}+\chi_{1}: B \rightarrow \mathbb{C}^{*}\right)$
$7 n=1, H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{2} \varpi_{2}+\chi_{1}: T_{1} \times B_{2} \times \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}\right)$
8 $n=1$,

$$
H=\left\langle T_{1} \times \operatorname{ker}\left(m_{2} \varpi_{2}+\chi_{1}: B_{2} \times \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}\right),\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right], \pm 1\right)\right\rangle
$$

(9 $n=2, H=\operatorname{ker}\left(m_{1} \varpi_{1}+\chi_{1}: B \rightarrow \mathbb{C}^{*}\right) \cap \operatorname{ker}\left(k_{1} \varpi_{1}+k_{2} \varpi_{2}+\chi_{2}: B \rightarrow \mathbb{C}^{*}\right)$

Remaining rank one cases

$\| G=\mathrm{Sp}_{4}$ and $H=\mathrm{SL}_{2} \times \mathrm{Sp}_{2}$
2 $G=\mathrm{Sp}_{4}$ and $H=N_{\mathrm{Sp}_{4}}\left(\mathrm{SL}_{2} \times \mathrm{Sp}_{2}\right)$
3 $G=\mathrm{SL}_{2}^{3}$ and $H=B_{1} \times \operatorname{diag}\left(\mathrm{SL}_{2}\right)$
$4 G=\mathrm{SL}_{2}^{3}$ and $H=B_{1} \times N_{\mathrm{SL}_{2}^{2}}\left(\operatorname{diag}\left(\mathrm{SL}_{2}\right)\right)$
5 $G=\mathrm{SL}_{2}^{3}$ and $H=B_{1} \times B_{2} \times T_{3}$
б $G=\mathrm{SL}_{2}^{3}$ and $H=B_{1} \times B_{2} \times N_{\mathrm{SL}_{2}}\left(T_{3}\right)$
$7 G=\mathrm{SL}_{3} \times \mathrm{SL}_{2}$ and $H=Q_{1} \times T_{2}$
$8 G=\mathrm{SL}_{3} \times \mathrm{SL}_{2}$ and $H=Q_{1} \times N_{\mathrm{SL}_{2}}\left(T_{2}\right)$
g $G=\mathrm{SL}_{2}^{3} \times \mathbb{C}^{*}$ and $H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{2} \varpi_{2}+m_{3} \varpi_{3}+\chi: B \rightarrow \mathbb{C}^{*}\right)$
匹10 $G=\mathrm{SL}_{3} \times \mathrm{SL}_{2} \times \mathbb{C}^{*}$ and $H=\operatorname{ker}\left(m_{1} \varpi_{1}+m_{3} \varpi_{3}+\chi: Q_{1} \times B_{2} \times \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}\right)$
[1] $G=\operatorname{Sp}_{4} \times \mathbb{C}^{*}$ and $H=\operatorname{ker}\left(m_{1} \varpi_{1}+\chi: Q_{\left\{\alpha_{1}\right\}} \rightarrow \mathbb{C}^{*}\right)$
[12 $G=\operatorname{Sp}_{4} \times \mathbb{C}^{*}$ and $H=\operatorname{ker}\left(m_{2} \varpi_{2}+\chi: Q_{\left\{\alpha_{2}\right\}} \rightarrow \mathbb{C}^{*}\right)$
[区 $G=S L_{4} \times \mathbb{C}^{*}$ and $H=\operatorname{ker}\left(m_{1} \varpi_{1}+\chi: Q_{\left\{\alpha_{1}\right\}} \rightarrow \mathbb{C}^{*}\right)$

Recollections on reductive groups: representations

Fix $\langle\cdot, \cdot\rangle$ a scalar product on $\mathrm{X}^{*}(T) \otimes \mathbb{R}$ extending the Killing product.
1 All finite dimensional representations of G are decomposable into direct sums of irreducible representations.
2 There is a bijection between the set of dominant weights $\left\{\lambda \in \mathrm{X}^{*}(T) \mid \forall \alpha \in \Phi^{+},\langle\alpha, \lambda\rangle \geq 0\right\}$ and the set of irreducible representations of G up to isomorphism.
${ }_{3}$ Explicitely, sending an irreducible representation V to the weight λ of the unique B-eigenvector in V, called the highest weight of V.

We denote by V_{λ} an irreducible representation with highest weight λ.
Positive Weyl chamber: $\left(\Phi^{+}\right)^{\vee}:=\left\{\lambda \in \mathrm{X}^{*}(T) \otimes \mathbb{R} \mid \forall \alpha \in \Phi^{+},\langle\alpha, \lambda\rangle \geq 0\right\}$

$$
V=\sum_{\lambda \in \mathrm{X}^{*}(T) \cap\left(\Phi^{+}\right)^{\vee}} V_{\lambda}^{m_{\lambda}}
$$

Recollection on G-varieties: Moment polytope

(X, L) polarized G-variety (i.e. L ample G-linearized line bundle on X)

Moment polytope

$$
\Delta=\Delta(X, L)=\operatorname{Conv}\left\{\frac{\lambda}{k}\right\}
$$

where $k \in \mathbb{Z}_{>0}$ and λ runs over all characters of B such that there exists a B-eigensection $s \in H^{0}\left(X, L^{k}\right)$ with eigenvalue λ :

$$
\forall b \in B, \quad b \cdot s=\lambda(b) s
$$

This is a convex polytope sitting inside the positive Weyl chamber of (G, T, B).

Moment polytope for spherical varieties

X spherical G-variety, L ample G-linearized line bundle on X.
Fix $s \in H^{0}\left(X, L^{k}\right)$ a B eigensection with weight χ, then [Brion 1989]

$$
H^{0}\left(X, L^{k}\right)=\bigoplus_{\lambda \in k \Delta ; \lambda-\chi \in M} V_{\lambda}
$$

in particular, multiplicity free
Provides an expression for the dimension of $H^{0}\left(X, L^{k}\right)$ for tomorrow, thanks to:

Weyl dimension formula

$\operatorname{dim} V_{\lambda}=\prod_{\alpha \in \Phi^{+}} \frac{\langle\lambda+\varpi, \alpha\rangle}{\langle\varpi, \alpha\rangle}$ where $\varpi=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$.

Combinatorial description [Brion 1989]

$\operatorname{div}(s)=\sum n_{D} D$ sum over B-stable prime divisor, $n_{D} \in \mathbb{Z}$.
$D \leftrightarrow \operatorname{ord}_{D}$ valuation on $\mathbb{C}(X)=\mathbb{C}(G / H) \mapsto \rho(D):=\left.\operatorname{ord}_{D}\right|_{M} \in N=\operatorname{Hom}(M, \mathbb{Z})$

$$
\Delta-\chi=\left\{m \in M \otimes \mathbb{R} \mid \rho(D)(m)+n_{D} \geq 0\right\}
$$

underlying data at the heart of a dictionary similar to that for toric varieties
A valuation of $\mathbb{C}(X)$ (the field of rational functions on X) is a group morphism $\nu: \mathbb{C}(X)^{*} \rightarrow \mathbb{R}$ such that $\nu\left(\mathbb{C}^{*}\right)=\{0\}$ and $\nu\left(f_{1}+f_{2}\right) \geq \min \nu\left(f_{i}\right)$.

Valuation cone

The valuation cone $\mathcal{V}=\mathcal{V}(G / H)$ of X is the image by ρ of the set of G-invariant valuations of $\mathbb{C}(X)$. It is a rational polyedral cone in $N \otimes \mathbb{R}$.

Colors

The set of colors $\mathcal{D}=\mathcal{D}(G / H)$ is the set of B-stable prime divisors of G / H.

$$
\text { colored fans } \leftrightarrow \text { spherical embeddings } G / H \subset X
$$

Fano spherical varieties

[Brion 1991] explicit $K_{X}^{-1}=\mathcal{O}\left(\sum m_{D} D\right)$ with $m_{D}=1$ if D is G-stable

Definition

Polytope $Q \subset N \otimes \mathbb{R}$ with vertices $V(Q)$ is locally factorial G / H-reflexive if $0 \in \operatorname{Int}(Q)$,
I $0 \in \operatorname{lnt}(Q)$,
2. $\forall D \in \mathcal{D}, \frac{\rho(D)}{m_{D}} \in Q$,
$3 V(Q) \subset\left((N \cap \mathcal{V}) \cup\left\{\frac{\rho(D)}{m_{D}}, D \in \mathcal{D}\right\}\right)$,
$4 \forall$ facet F st $\operatorname{cone}(F) \cap \operatorname{lnt}(\mathcal{V}) \neq \emptyset$, let $\mathcal{D}_{F}=\left\{D \in \mathcal{D} \left\lvert\, \frac{\rho(D)}{m_{D}} \in F\right.\right\}$, then
$1 \rho: \mathcal{D}_{F} \rightarrow \operatorname{cone}(F)$ is injective
2. $V(F)=\left\{\left.\frac{\rho(D)}{m_{D}} \right\rvert\, D \in \mathcal{D}_{F}\right\} \cup \mathcal{C}_{F}$, and $\mathcal{C}_{F} \cup \rho\left(\mathcal{D}_{F}\right)$ forms a basis of N

Theorem (Gagliardi-Hofscheier 2015)

X locally factorial Fano iff $(\Delta-\chi)^{\vee}$ is locally factorial G/H-reflexive

What's left to do?

Recall goal: classification of spherical Fano (locally factorial) fourfolds.
\Rightarrow For each G / H, find all locally factorial G / H-reflexive polytopes.
Rk 1 or 2 rather straightforward but rank 3 is more involved!
[Batyrev] toric dim 3 or 4: relies on an understanding of explicit birational geometry of toric manifolds (at least, blowups).
The same understanding is desirable for spherical varieties. Case by case analysis?

Workaround: for rank three, dimension four spherical homogeneous spaces, if one forgets G / H the G / H-reflexive polytopes are smooth / canonical Fano toric polytopes, classified by [Batyrev, Watanabe-Watanabe] / [Kasprzyck]

Still WIP: canonical Fano toric $=674688$ polytopes up to $\mathrm{GL}_{3}(\mathbb{Z})$-action Want to impose as many conditions as possible before going through the list.

