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Motivation : Toric geometry

Definition
A normal n-dimensional algebraic variety X equipped with an effective action of a
torus (C∗)n is called a toric variety.

1 toric variety X ↔ fan

2 polarized toric variety (X n, L) ↔ integral polytope ∆ ⊂ Rn

3 Fano toric variety (X ,K−1
X ) ↔ reflexive polytope

4 admits a Kähler-Einstein metric ↔ Bar(∆) = 0

5 polarized toric variety (X , L) is K-(semi)stable ↔ explicit linear functional L
is non-negative on convex functions on ∆
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Other group actions

X normal complex algebraic variety
⟲
G connected complex reductive algebraic group

Basic data : complexity and rank

1 complexity of G ↶ X := min codim of an orbit of a Borel subgroup B ⊂ G

2 weight lattice M := subgroup of weights of rational B-eigenfunctions

3 rank of G ↶ X := rank of M

Definition: G ↶ X spherical variety if complexity = 0

Theory of spherical varieties: a dictionary, as in the toric case

geometric ↔ combinatorial / convex

[Luna-Vust 83, Brion, Knop,...]
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Recollections on reductive groups: root system

G ⊃ B Borel subgroup of G , T ≃ (C∗)r a maximal torus of B

X∗(B) = X∗(T ) := {χ : T → C∗ morphism} ≃ Zr group of characters

Φ ⊂ X∗(T ) root system of (G ,T ), Φ+ ⊂ Φ roots of B.

gα := {x ∈ g | ∀t ∈ T ,Ad(t)(x) = α(t)x}

g = t⊕
⊕
α∈Φ

gα b = t⊕
⊕
α∈Φ+

gα

Example: GLn, B upper triangular matrices, T diagonal matrices

X∗(T ) generated by diag(a1, . . . , an) 7→ aj
Φ is the set of αj,k : diag(a1, . . . , an) 7→ aj/ak for j ̸= k , and gαj,k

= CEj,k

αj,k ∈ Φ+ iff j < k.
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First examples of spherical varieties

1 toric varieties are spherical

2 Bruhat decomposition ⇒ G/B spherical e.g. P1 = SL2 /B

3 if B ⊂ P ⊂ G , G/P spherical e.g. SL3 ⟲ P2

4 SL2 acts on Sym2 by congruences ⇒ SL2 ⟲ P2 spherical

5 diagonal action of SL2 on P1 × P1 is spherical

6 SL2 ×C∗ ⟲ P(1, 1, k) spherical

7 SL2 ×C∗ ⟲ P(OP1 ⊕OP1(k)) spherical

These (plus invariant subvarieties) exhaust all 2-dim spherical varieties

Higher dimensions?
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Low dimensional spherical Fano manifolds

Dimension 3 Fano spherical: [Hofscheier PhD thesis 2015], not available online

WIP with Pierre-Louis Montagard: classification of spherical Fano fourfolds

Toric varieties:

▶ dimension 2 well-known

▶ dimension 3 [Batyrev, Watanabe-Watanabe]

▶ dimension 4 [Batyrev]

▶ dimension 5 to 8 by algorithm [Obro]

Only a question about special integral polytopes

Here, first obstacle: determine possible open orbits G/H. Only after, becomes
question about special rational polytopes.

Theorem [D.-Montagard, 2023]

Explicit classification of spherical homogeneous spaces of dimension 4.
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Strategy for classification of spherical G/H

Standing Assumption: G = G sc × (C∗)n with G sc semisimple, simply connected
→ action of G sc on G/H has finite central kernel
→ action of (C∗)n on G/H is effective.

Theorem (Brion-Luna-Vust 1986)

Assume BH/H open in G/H. Let P = Stab(BH/H). There exists a Levi
subgroup L of P with connected center C such that P ∩H = L∩H contains [L, L]
and the map

Pu × C/(C ∩ H) → BH/H, (p, x) 7→ p · x

is an isomorphism.

In particular,

dim(G/H) = rank(G/H) + dim(G/P)

and under the standing assumption, P does not contain a simple factor of G .
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G rank(G ) G/P dim(G/P)

SL2 1 P1 1
SL3 2 P2 2

SL22 2 P1 × P1 2
Sp4 2 Q3 3
SL3 2 W 3
Sp4 2 P3 3
SL4 3 P3 3

SL3 ×SL2 3 P2 × P1 3

SL32 3 P1 × P1 × P1 3
SL3 × SL2 3 W × P1 4
Sp4 ×SL2 3 Q3 × P1 4

SL4 3 Q4 4
Sp4 ×SL2 3 P3 × P1 4

SL5 4 P4 4
SL4 × SL2 4 P3 × P1 4

SL23 4 P2 × P2 4

SL3 × SL22 4 P2 × P1 × P1 4

SL42 4 P1 × P1 × P1 × P1 4
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Recall
dim(G/H) = rank(G/H) + dim(G/P)

Consequence: strong restriction on possible G

▶ If rank(G/H) = dim(G/H) then P = G = (C∗)n and H trivial (toric case).

▶ If rank(G/H) = dim(G/H)− 1 then G sc = SL2.

▶ If rank(G/H) = dim(G/H)− 2 then G sc ∈ {SL3,SL22}.
▶ If rank(G/H) = dim(G/H)− 3 then G sc ∈ {SL4,Sp4,SL3 ×SL2,SL

3
2,SL3}.

▶ If rank(G/H) = 0 then H = P (homogeneous case)

If dim(G/H) ≤ 4, need only consider those G sc .

Furthermore: if rank(G/H) = 1, spherical homogeneous spaces classified up to
parabolic induction.
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Parabolic induction

G/H =
G × (G0/H0)

Q

under the action q · (g , x) = (gq−1, π(q) · x), for some π : Q → G0 epimorphism
from a proper parabolic subgroup Q of G to a connected reductive group G0

Example: SL2 ↶ C2 \ {0} = SL2 /

(
1 ∗
0 1

)
is obtained by parabolic induction:

Q =

(
∗ ∗
0 ∗

)
π : Q → C∗,

(
a b
0 1

a

)
7→ a

Special case: if G0 = (C∗)r (⇔ Bu ⊂ H), say G/H is horospherical.

In general, it is characterized by Qu ⊂ H ⊂ Q
or even, at the level of Lie algebras qu ⊂ h ⊂ q
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Next step

Will come back to rank one spherical fourfolds later.

Next goal: classify spherical subgroup H of G = G sc × (C∗)n, with
dim(G/H) ≤ 4 and G sc ∈ {SL2,SL3,SL22}

1 Algebraic subgroups of SL2 are well-known

2 Lie subalgebras of sl3 and sl2 ⊕ sl2 up to conjugation have been classified
[Douglas-Repka 2016]

▷ Determine which correspond to spherical subgroups
▷ throw in a torus factor.

Upshot: most spherical homogeneous spaces are obtained by parabolic inductions!

Downside: higher dimension will be a combinatorial nightmare!
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Spherical subgroups of G = SL2×(C∗)n

(Under standing assumption, up to conjugation and exterior automorphism)

1 H =

〈[
• 0
0 •

]
× {1},

([
0 −1
1 0

]
,±1, 1, . . . , 1

)〉

2 H =

{([
a 0
0 1

a

]
, a−m, 1 . . . , 1

)}
for some m ∈ Z≥0

3 H =

{([
a b
0 1

a

]
, a−m, 1 . . . , 1

)}

4 H =

{([
e

2ikπ
m b

0 e−
2ikπ
m

]
, 1 . . . , 1

)}
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Spherical subgroups of G = SL3×(C∗)n

ϖj fundamental weights, χj projection to jth C∗ factor, Q maximal parabolic

Assume dimG/H ≤ 4 and AutG ,0(G/H) ⊂ G .

Up to conjugation and G -equivariant automorphism,

1 n = 2, H = ker(mϖ1 +χ1 : Q → C∗)∩ ker(χ2 : Q → C∗) for some m ∈ Z≥0,

2 n = 1, H = ker(mϖ1 + χ1 : Q → Gm)

3 n = 1, H = ker(m1ϖ1 +m2ϖ2 + χ1 : B → Gm)

4 n = 0, H = B

5 n = 0, H = Q

6 n = 0, H = ⟨Qu,T ⟩
7 n = 0, H = N(⟨Qu,T ⟩)

8 n = 0, H = S(GL2 ×GL1) (only case not a parabolic induction)
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Spherical subgroups of G = SL22×(C∗)n

(dim(G/H) ≤ 4, up to conjugation and G -equivariant automorphism)

1 G/H is obtained by parabolic induction

2 n = 0 and H is one of the following:

1 diag(SL2)
2 N(diag(SL2))

3 T1 × T2

4 N(T1)× T2

5 N(T1)× N(T2)

6

〈
T1 × T2,

([
0 1
−1 0

]
,

[
0 1
−1 0

])〉
7 diag(B1)
8 N(diag(B1)) = ⟨diag(B1), (I2,−I2)⟩

3 n = 1 and H is one of the following:

1 diag(SL2)× {1}
2 N(diag(SL2))× {1}
3 ⟨diag(SL2), (I2,−I2,−1)⟩
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Parabolic inductions for G = SL22×(C∗)n

1 n = 0, H = B

2 n = 0, H = B1 × T2

3 n = 0, H = B1 × N(T2)

4 n = 0, H = ker(m1ϖ1 +m2ϖ2 : T1 × B2 → C∗)

5 n = 0, H =

〈
T1 × ker(m2ϖ2 : B2 → C∗),

([
0 −1
1 0

]
,

[
ξ 0
0 ξ−1

])〉
6 n = 1, H = ker(m1ϖ1 +m2ϖ2 + χ1 : B → C∗)

7 n = 1, H = ker(m1ϖ1 +m2ϖ2 + χ1 : T1 × B2 × C∗ → C∗)

8 n = 1,

H =

〈
T1 × ker(m2ϖ2 + χ1 : B2 × C∗ → C∗),

([
0 −1
1 0

]
,

[
ξ 0
0 ξ−1

]
,±1

)〉
9 n = 2, H = ker(m1ϖ1 + χ1 : B → C∗) ∩ ker(k1ϖ1 + k2ϖ2 + χ2 : B → C∗)
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Remaining rank one cases

1 G = Sp4 and H = SL2 ×Sp2
2 G = Sp4 and H = NSp4(SL2 ×Sp2)

3 G = SL32 and H = B1 × diag(SL2)

4 G = SL32 and H = B1 × NSL2
2
(diag(SL2))

5 G = SL32 and H = B1 × B2 × T3

6 G = SL32 and H = B1 × B2 × NSL2(T3)

7 G = SL3 ×SL2 and H = Q1 × T2

8 G = SL3 ×SL2 and H = Q1 × NSL2(T2)

9 G = SL32 ×C∗ and H = ker(m1ϖ1 +m2ϖ2 +m3ϖ3 + χ : B → C∗)

10 G = SL3 ×SL2 ×C∗ and H = ker(m1ϖ1 +m3ϖ3 + χ : Q1 × B2 × C∗ → C∗)

11 G = Sp4 ×C∗ and H = ker(m1ϖ1 + χ : Q{α1} → C∗)

12 G = Sp4 ×C∗ and H = ker(m2ϖ2 + χ : Q{α2} → C∗)

13 G = SL4 ×C∗ and H = ker(m1ϖ1 + χ : Q{α1} → C∗)

Thibaut Delcroix (Montpellier) Introduction to spherical varieties 16 / 22



Recollections on reductive groups: representations

Fix ⟨·, ·⟩ a scalar product on X∗(T )⊗ R extending the Killing product.

1 All finite dimensional representations of G are decomposable into direct sums
of irreducible representations.

2 There is a bijection between the set of dominant weights
{λ ∈ X∗(T ) | ∀α ∈ Φ+, ⟨α, λ⟩ ≥ 0} and the set of irreducible representations
of G up to isomorphism.

3 Explicitely, sending an irreducible representation V to the weight λ of the
unique B-eigenvector in V , called the highest weight of V .

We denote by Vλ an irreducible representation with highest weight λ.

Positive Weyl chamber: (Φ+)∨ := {λ ∈ X∗(T )⊗ R | ∀α ∈ Φ+, ⟨α, λ⟩ ≥ 0}

V =
∑

λ∈X∗(T )∩(Φ+)∨

Vmλ

λ
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Recollection on G -varieties: Moment polytope

(X , L) polarized G -variety (i.e. L ample G -linearized line bundle on X )

Moment polytope

∆ = ∆(X , L) = Conv

{
λ

k

}
where k ∈ Z>0 and λ runs over all characters of B such that there exists a
B-eigensection s ∈ H0(X , Lk) with eigenvalue λ:

∀b ∈ B, b · s = λ(b)s

This is a convex polytope sitting inside the positive Weyl chamber of (G ,T ,B).
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Moment polytope for spherical varieties

X spherical G -variety, L ample G -linearized line bundle on X .

Fix s ∈ H0(X , Lk) a B eigensection with weight χ, then [Brion 1989]

H0(X , Lk) =
⊕

λ∈k∆;λ−χ∈M

Vλ

in particular, multiplicity free

Provides an expression for the dimension of H0(X , Lk) for tomorrow, thanks to:

Weyl dimension formula

dimVλ =
∏

α∈Φ+
⟨λ+ϖ,α⟩
⟨ϖ,α⟩ where ϖ = 1

2

∑
α∈Φ+ α.
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Combinatorial description [Brion 1989]
div(s) =

∑
nDD sum over B-stable prime divisor, nD ∈ Z.

D ↔ ordD valuation on C(X ) = C(G/H) 7→ ρ(D) := ordD |M ∈ N = Hom(M,Z)

∆− χ = {m ∈ M ⊗ R | ρ(D)(m) + nD ≥ 0}

underlying data at the heart of a dictionary similar to that for toric varieties

A valuation of C(X ) (the field of rational functions on X ) is a group morphism
ν : C(X )∗ → R such that ν(C∗) = {0} and ν(f1 + f2) ≥ min ν(fi ).

Valuation cone

The valuation cone V = V(G/H) of X is the image by ρ of the set of G -invariant
valuations of C(X ). It is a rational polyedral cone in N ⊗ R.

Colors

The set of colors D = D(G/H) is the set of B-stable prime divisors of G/H.

colored fans ↔ spherical embeddings G/H ⊂ X
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Fano spherical varieties

[Brion 1991] explicit K−1
X = O(

∑
mDD) with mD = 1 if D is G -stable

Definition

Polytope Q ⊂ N ⊗ R with vertices V (Q) is locally factorial G/H-reflexive if
0 ∈ Int(Q),

1 0 ∈ Int(Q),

2 ∀D ∈ D, ρ(D)
mD

∈ Q,

3 V (Q) ⊂
(
(N ∩ V) ∪ {ρ(D)

mD
,D ∈ D}

)
,

4 ∀ facet F st cone(F ) ∩ Int(V) ̸= ∅, let DF = {D ∈ D | ρ(D)
mD

∈ F}, then
1 ρ : DF → cone(F ) is injective

2 V (F ) = { ρ(D)
mD

| D ∈ DF} ∪ CF , and CF ∪ ρ(DF ) forms a basis of N

Theorem (Gagliardi-Hofscheier 2015)

X locally factorial Fano iff (∆− χ)∨ is locally factorial G/H-reflexive
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What’s left to do?

Recall goal: classification of spherical Fano (locally factorial) fourfolds.

⇒ For each G/H, find all locally factorial G/H-reflexive polytopes.

Rk 1 or 2 rather straightforward but rank 3 is more involved!

[Batyrev] toric dim 3 or 4: relies on an understanding of explicit birational
geometry of toric manifolds (at least, blowups).
The same understanding is desirable for spherical varieties. Case by case
analysis?

Workaround: for rank three, dimension four spherical homogeneous spaces, if one
forgets G/H the G/H-reflexive polytopes are smooth / canonical Fano toric
polytopes, classified by [Batyrev, Watanabe-Watanabe] / [Kasprzyck]

Still WIP: canonical Fano toric = 674 688 polytopes up to GL3(Z)-action
Want to impose as many conditions as possible before going through the list.
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