Effective K-stability of spherical varieties Talk 1: Introduction to spherical varieties via dimension four

Thibaut Delcroix

Université de Montpellier

Motivation : Toric geometry

Definition

A normal *n*-dimensional algebraic variety X equipped with an effective action of a torus $(\mathbb{C}^*)^n$ is called a toric variety.

- **1** toric variety $X \leftrightarrow$ fan
- **2** polarized toric variety $(X^n, L) \leftrightarrow$ integral polytope $\Delta \subset \mathbb{R}^n$
- **3** Fano toric variety $(X, K_X^{-1}) \leftrightarrow$ reflexive polytope
- 4 admits a Kähler-Einstein metric \leftrightarrow Bar $(\Delta) = 0$
- **5** polarized toric variety (X, L) is K-(semi)stable \leftrightarrow explicit linear functional \mathcal{L} is non-negative on convex functions on Δ

Other group actions

X normal complex algebraic variety

Q

 ${\it G}$ connected complex reductive algebraic group

Basic data : complexity and rank

- **I** complexity of $G \curvearrowleft X := \min$ codim of an orbit of a Borel subgroup $B \subset G$
- **2** weight lattice M := subgroup of weights of rational *B*-eigenfunctions
- **3** rank of $G \curvearrowleft X :=$ rank of M

Definition: $G \curvearrowleft X$ spherical variety if complexity = 0

Theory of spherical varieties: a dictionary, as in the toric case

```
geometric ↔ combinatorial / convex
[Luna-Vust 83, Brion, Knop,...]
```

Recollections on reductive groups: root system

 $G \supset B$ Borel subgroup of G, $T \simeq (\mathbb{C}^*)^r$ a maximal torus of B $X^*(B) = X^*(T) := \{\chi : T \to \mathbb{C}^* \text{ morphism}\} \simeq \mathbb{Z}^r$ group of characters $\Phi \subset X^*(T)$ root system of (G, T), $\Phi^+ \subset \Phi$ roots of B.

$$\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} \mid \forall t \in T, \operatorname{Ad}(t)(x) = \alpha(t)x\}$$

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{lpha \in \Phi} \mathfrak{g}_{lpha} \qquad \qquad \mathfrak{b} = \mathfrak{t} \oplus \bigoplus_{lpha \in \Phi^+} \mathfrak{g}_{lpha}$$

Example: GL_n , B upper triangular matrices, T diagonal matrices $X^*(T)$ generated by $diag(a_1, \ldots, a_n) \mapsto a_j$ Φ is the set of $\alpha_{j,k}$: $diag(a_1, \ldots, a_n) \mapsto a_j/a_k$ for $j \neq k$, and $\mathfrak{g}_{\alpha_{j,k}} = \mathbb{C}E_{j,k}$ $\alpha_{j,k} \in \Phi^+$ iff j < k.

First examples of spherical varieties

1 toric varieties are spherical

- **2** Bruhat decomposition $\Rightarrow G/B$ spherical e.g. $\mathbb{P}^1 = \operatorname{SL}_2/B$
- 3 if $B \subset P \subset G$, G/P spherical e.g. $SL_3 \circlearrowleft \mathbb{P}^2$
- 4 SL₂ acts on Sym₂ by congruences \Rightarrow SL₂ $\circlearrowleft \mathbb{P}^2$ spherical
- **5** diagonal action of SL_2 on $\mathbb{P}^1 \times \mathbb{P}^1$ is spherical
- **6** SL₂ × $\mathbb{C}^* \oplus \mathbb{P}(1, 1, k)$ spherical
- 7 SL₂ × $\mathbb{C}^* \circ \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(k))$ spherical

These (plus invariant subvarieties) exhaust all 2-dim spherical varieties Higher dimensions?

Low dimensional spherical Fano manifolds

Dimension 3 Fano spherical: [Hofscheier PhD thesis 2015], not available online

WIP with Pierre-Louis Montagard: classification of spherical Fano fourfolds

Toric varieties:

- dimension 2 well-known
- dimension 3 [Batyrev, Watanabe-Watanabe]
- dimension 4 [Batyrev]
- dimension 5 to 8 by algorithm [Obro]

Only a question about special integral polytopes

Here, first obstacle: determine possible open orbits G/H. Only after, becomes question about special rational polytopes.

Theorem [D.-Montagard, 2023]

Explicit classification of spherical homogeneous spaces of dimension 4.

Strategy for classification of spherical G/H

Standing Assumption: $G = G^{sc} \times (\mathbb{C}^*)^n$ with G^{sc} semisimple, simply connected \rightarrow action of G^{sc} on G/H has finite central kernel

 \rightarrow action of $(\mathbb{C}^*)^n$ on G/H is effective.

Theorem (Brion-Luna-Vust 1986)

Assume BH/H open in G/H. Let P = Stab(BH/H). There exists a Levi subgroup L of P with connected center C such that $P \cap H = L \cap H$ contains [L, L] and the map

 $P^{u} \times C/(C \cap H) \rightarrow BH/H, \qquad (p, x) \mapsto p \cdot x$

is an isomorphism.

In particular,

$$\dim(G/H) = \operatorname{rank}(G/H) + \dim(G/P)$$

and under the standing assumption, P does not contain a simple factor of G.

G	rank(G)	G/P	$\dim(G/P)$
SL ₂	1	\mathbb{P}^1	1
SL₃	2	\mathbb{P}^2	2
SL_2^2	2	$\mathbb{P}^1 imes \mathbb{P}^1$	2
Sp_4	2	Q^3	3
SL ₃	2	W	3
Sp_4	2	\mathbb{P}^3	3
SL_4	3	\mathbb{P}^3	3
$SL_3\timesSL_2$	3	$\mathbb{P}^2 imes\mathbb{P}^1$	3
SL_2^3	3	$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$	3
$SL_3\timesSL_2$	3	$W imes \mathbb{P}^1$	4
$Sp_4\timesSL_2$	3	$Q^3 imes \mathbb{P}^1$	4
SL_4	3	Q^4	4
$Sp_4\timesSL_2$	3	$\mathbb{P}^3 imes\mathbb{P}^1$	4
SL_5	4	₽4	4
$SL_4\timesSL_2$	4	$\mathbb{P}^3 imes\mathbb{P}^1$	4
SL_3^2	4	$\mathbb{P}^2 imes \mathbb{P}^2$	4
$SL_3 imes SL_2^2$	4	$\mathbb{P}^2 imes \mathbb{P}^1 imes \mathbb{P}^1$	4
SL_2^4	4	$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$	4

Thibaut Delcroix (Montpellier)

Recall

$$\dim(G/H) = \operatorname{rank}(G/H) + \dim(G/P)$$

Consequence: strong restriction on possible G

- ▶ If rank $(G/H) = \dim(G/H)$ then $P = G = (\mathbb{C}^*)^n$ and H trivial (toric case).
- If rank $(G/H) = \dim(G/H) 1$ then $G^{sc} = SL_2$.
- If rank $(G/H) = \dim(G/H) 2$ then $G^{sc} \in {SL_3, SL_2^2}$.
- ▶ If rank(G/H) = dim(G/H) 3 then $G^{sc} \in {SL_4, Sp_4, SL_3 \times SL_2, SL_2^3, SL_3}$.
- If rank(G/H) = 0 then H = P (homogeneous case)

If dim $(G/H) \leq 4$, need only consider those G^{sc} .

Furthermore: if rank(G/H) = 1, spherical homogeneous spaces classified up to parabolic induction.

Parabolic induction

$$G/H = \frac{G \times (G_0/H_0)}{Q}$$

under the action $q \cdot (g, x) = (gq^{-1}, \pi(q) \cdot x)$, for some $\pi : Q \to G_0$ epimorphism from a proper parabolic subgroup Q of G to a connected reductive group G_0

Example:
$$SL_2 \curvearrowleft \mathbb{C}^2 \setminus \{0\} = SL_2 / \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$$
 is obtained by parabolic induction:

$$Q = egin{pmatrix} st & st \ 0 & st \end{pmatrix} \qquad \pi: Q o \mathbb{C}^*, \quad egin{pmatrix} a & b \ 0 & rac{1}{a} \end{pmatrix} \mapsto a$$

Special case: if $G_0 = (\mathbb{C}^*)^r \iff B^u \subset H$, say G/H is horospherical.

In general, it is characterized by $Q^u \subset H \subset Q$ or even, at the level of Lie algebras $q^u \subset \mathfrak{h} \subset \mathfrak{q}$

Next step

Will come back to rank one spherical fourfolds later.

Next goal: classify spherical subgroup H of $G = G^{sc} \times (\mathbb{C}^*)^n$, with $\dim(G/H) \leq 4$ and $G^{sc} \in {SL_2, SL_3, SL_2^2}$

- 1 Algebraic subgroups of SL₂ are well-known
- 2 Lie subalgebras of \mathfrak{sl}_3 and $\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ up to conjugation have been classified [Douglas-Repka 2016]
- Determine which correspond to spherical subgroups
 throw in a torus factor.

Upshot: most spherical homogeneous spaces are obtained by parabolic inductions!

Downside: higher dimension will be a combinatorial nightmare!

Spherical subgroups of $G = SL_2 \times (\mathbb{C}^*)^n$

(Under standing assumption, up to conjugation and exterior automorphism)

$$H = \left\langle \begin{bmatrix} \bullet & 0 \\ 0 & \bullet \end{bmatrix} \times \{1\}, \quad \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \pm 1, 1, \dots, 1 \right) \right\rangle$$

$$H = \left\{ \left(\begin{bmatrix} a & 0 \\ 0 & \frac{1}{a} \end{bmatrix}, a^{-m}, 1, \dots, 1 \right) \right\} \text{ for some } m \in \mathbb{Z}_{\geq 0}$$

$$H = \left\{ \left(\begin{bmatrix} a & b \\ 0 & \frac{1}{a} \end{bmatrix}, a^{-m}, 1, \dots, 1 \right) \right\}$$

$$H = \left\{ \left(\begin{bmatrix} e^{\frac{2ik\pi}{m}} & b \\ 0 & e^{-\frac{2ik\pi}{m}} \end{bmatrix}, 1, \dots, 1 \right) \right\}$$

Spherical subgroups of $G = SL_3 \times (\mathbb{C}^*)^n$

 ϖ_j fundamental weights, χ_j projection to *j*th \mathbb{C}^* factor, *Q* maximal parabolic Assume dim $G/H \leq 4$ and Aut^{G,0} $(G/H) \subset G$.

Up to conjugation and G-equivariant automorphism,

1
$$n = 2, H = \ker(m\varpi_1 + \chi_1 : Q \to \mathbb{C}^*) \cap \ker(\chi_2 : Q \to \mathbb{C}^*)$$
 for some $m \in \mathbb{Z}_{\geq 0}$,
2 $n = 1, H = \ker(m\varpi_1 + \chi_1 : Q \to \mathbb{G}_m)$
3 $n = 1, H = \ker(m_1\varpi_1 + m_2\varpi_2 + \chi_1 : B \to \mathbb{G}_m)$
4 $n = 0, H = B$
5 $n = 0, H = Q$
6 $n = 0, H = \langle Q^u, T \rangle$
7 $n = 0, H = N(\langle Q^u, T \rangle)$

B n = 0, $H = S(GL_2 \times GL_1)$ (only case **not** a parabolic induction)

Spherical subgroups of $G = SL_2^2 \times (\mathbb{C}^*)^n$

 $(\dim(G/H) \leq 4$, up to conjugation and G-equivariant automorphism)

- **1** G/H is obtained by parabolic induction
- **2** n = 0 and H is one of the following:
 - 1 diag(SL₂) 2 $N(\text{diag}(\text{SL}_2))$ 3 $T_1 \times T_2$ 4 $N(T_1) \times T_2$ 5 $N(T_1) \times N(T_2)$ 6 $\langle T_1 \times T_2, \left(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right) \rangle$ 7 diag(B_1) 8 $N(\text{diag}(B_1)) = \langle \text{diag}(B_1), (I_2, -I_2) \rangle$

3 n = 1 and H is one of the following:

1 diag(SL₂) × {1}
2
$$N(\text{diag}(SL_2)) \times \{1\}$$

3 $\langle \text{diag}(SL_2), (I_2, -I_2, -1) \rangle$

Parabolic inductions for $G = \operatorname{SL}_2^2 \times (\mathbb{C}^*)^n$

$$\begin{array}{l} \mathbf{1} \quad n = 0, \ H = B \\ \mathbf{2} \quad n = 0, \ H = B_1 \times T_2 \\ \mathbf{3} \quad n = 0, \ H = B_1 \times N(T_2) \\ \mathbf{4} \quad n = 0, \ H = \ker(m_1 \varpi_1 + m_2 \varpi_2 : T_1 \times B_2 \to \mathbb{C}^*) \\ \mathbf{5} \quad n = 0, \ H = \left\langle T_1 \times \ker(m_2 \varpi_2 : B_2 \to \mathbb{C}^*), \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{bmatrix} \right) \right\rangle \\ \mathbf{6} \quad n = 1, \ H = \ker(m_1 \varpi_1 + m_2 \varpi_2 + \chi_1 : B \to \mathbb{C}^*) \\ \mathbf{7} \quad n = 1, \ H = \ker(m_1 \varpi_1 + m_2 \varpi_2 + \chi_1 : T_1 \times B_2 \times \mathbb{C}^* \to \mathbb{C}^*) \\ \mathbf{8} \quad n = 1, \\ H = \left\langle T_1 \times \ker(m_2 \varpi_2 + \chi_1 : B_2 \times \mathbb{C}^* \to \mathbb{C}^*), \left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{bmatrix}, \pm 1 \right) \right\rangle \\ \mathbf{9} \quad n = 2, \ H = \ker(m_1 \varpi_1 + \chi_1 : B \to \mathbb{C}^*) \cap \ker(k_1 \varpi_1 + k_2 \varpi_2 + \chi_2 : B \to \mathbb{C}^*) \\ \end{array}$$

Remaining rank one cases

 \Box C - C

$$G = Sp_4 \text{ and } H = SL_2 \times Sp_2$$

$$G = Sp_4 \text{ and } H = N_{Sp_4}(SL_2 \times Sp_2)$$

$$G = SL_2^3 \text{ and } H = B_1 \times \text{diag}(SL_2)$$

$$G = SL_2^3 \text{ and } H = B_1 \times N_{SL_2^2}(\text{diag}(SL_2))$$

$$G = SL_2^3 \text{ and } H = B_1 \times B_2 \times T_3$$

$$G = SL_2^3 \text{ and } H = B_1 \times B_2 \times N_{SL_2}(T_3)$$

$$G = SL_3 \times SL_2 \text{ and } H = Q_1 \times T_2$$

$$G = SL_3 \times SL_2 \text{ and } H = Q_1 \times N_{SL_2}(T_2)$$

$$G = SL_3 \times SL_2 \text{ and } H = ker(m_1\varpi_1 + m_2\varpi_2 + m_3\varpi_3 + \chi : B \to \mathbb{C}^*)$$

$$G = SL_3 \times SL_2 \times \mathbb{C}^* \text{ and } H = ker(m_1\varpi_1 + m_3\varpi_3 + \chi : Q_1 \times B_2 \times \mathbb{C}^* \to \mathbb{C}^*)$$

$$G = Sp_4 \times \mathbb{C}^* \text{ and } H = ker(m_2\varpi_2 + \chi : Q_{\{\alpha_1\}} \to \mathbb{C}^*)$$

$$G = SL_4 \times \mathbb{C}^* \text{ and } H = ker(m_1\varpi_1 + \chi : Q_{\{\alpha_1\}} \to \mathbb{C}^*)$$

Recollections on reductive groups: representations

Fix $\langle \cdot, \cdot \rangle$ a scalar product on $X^*(T) \otimes \mathbb{R}$ extending the Killing product.

- All finite dimensional representations of G are decomposable into direct sums of irreducible representations.
- 2 There is a bijection between the set of dominant weights {λ ∈ X*(T) | ∀α ∈ Φ⁺, ⟨α, λ⟩ ≥ 0} and the set of irreducible representations of G up to isomorphism.
- **3** Explicitely, sending an irreducible representation V to the weight λ of the unique B-eigenvector in V, called the highest weight of V.

We denote by V_{λ} an irreducible representation with highest weight λ .

Positive Weyl chamber: $(\Phi^+)^{\vee} := \{\lambda \in \mathsf{X}^*(\mathcal{T}) \otimes \mathbb{R} \mid \forall \alpha \in \Phi^+, \langle \alpha, \lambda \rangle \ge 0\}$

$$V = \sum_{\lambda \in \mathsf{X}^*(T) \cap (\Phi^+)^{\vee}} V_{\lambda}^{m_{\lambda}}$$

Recollection on G-varieties: Moment polytope

(X, L) polarized G-variety (i.e. L ample G-linearized line bundle on X)

Moment polytope

$$\Delta = \Delta(X, L) = \operatorname{Conv}\left\{\frac{\lambda}{k}\right\}$$

where $k \in \mathbb{Z}_{>0}$ and λ runs over all characters of B such that there exists a B-eigensection $s \in H^0(X, L^k)$ with eigenvalue λ :

$$\forall b \in B, \quad b \cdot s = \lambda(b)s$$

This is a convex polytope sitting inside the positive Weyl chamber of (G, T, B).

Moment polytope for spherical varieties

X spherical G-variety, L ample G-linearized line bundle on X.

Fix $s \in H^0(X, L^k)$ a B eigensection with weight χ , then [Brion 1989]

$$H^0(X,L^k) = igoplus_{\lambda \in k\Delta; \lambda - \chi \in M} V_\lambda$$

in particular, multiplicity free

Provides an expression for the dimension of $H^0(X, L^k)$ for tomorrow, thanks to:

Weyl dimension formula

dim
$$V_{\lambda} = \prod_{\alpha \in \Phi^+} \frac{\langle \lambda + \varpi, \alpha \rangle}{\langle \varpi, \alpha \rangle}$$
 where $\varpi = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$.

Combinatorial description [Brion 1989]

 $\operatorname{div}(s) = \sum n_D D$ sum over *B*-stable prime divisor, $n_D \in \mathbb{Z}$.

 $D \leftrightarrow \operatorname{ord}_D$ valuation on $\mathbb{C}(X) = \mathbb{C}(G/H) \mapsto \rho(D) := \operatorname{ord}_D|_M \in N = \operatorname{Hom}(M, \mathbb{Z})$

$$\Delta - \chi = \{ m \in M \otimes \mathbb{R} \mid \rho(D)(m) + n_D \ge 0 \}$$

underlying data at the heart of a dictionary similar to that for toric varieties

A valuation of $\mathbb{C}(X)$ (the field of rational functions on X) is a group morphism $\nu : \mathbb{C}(X)^* \to \mathbb{R}$ such that $\nu(\mathbb{C}^*) = \{0\}$ and $\nu(f_1 + f_2) \ge \min \nu(f_i)$.

Valuation cone

The valuation cone $\mathcal{V} = \mathcal{V}(G/H)$ of X is the image by ρ of the set of G-invariant valuations of $\mathbb{C}(X)$. It is a rational polyedral cone in $N \otimes \mathbb{R}$.

Colors

The set of colors $\mathcal{D} = \mathcal{D}(G/H)$ is the set of *B*-stable prime divisors of G/H.

colored fans \leftrightarrow spherical embeddings $G/H \subset X$

Fano spherical varieties

[Brion 1991] explicit $K_X^{-1} = \mathcal{O}(\sum m_D D)$ with $m_D = 1$ if D is G-stable

Definition

Polytope $Q \subset N \otimes \mathbb{R}$ with vertices V(Q) is *locally factorial* G/H-*reflexive* if $0 \in Int(Q)$,

1 $0 \in Int(Q)$,

2
$$\forall D \in \mathcal{D}, \frac{\rho(D)}{m_D} \in Q,$$

$$\exists V(Q) \subset \left((N \cap \mathcal{V}) \cup \{ \frac{\rho(D)}{m_D}, D \in \mathcal{D} \} \right),$$

4 \forall facet F st cone $(F) \cap \operatorname{Int}(\mathcal{V}) \neq \emptyset$, let $\mathcal{D}_F = \{D \in \mathcal{D} \mid \frac{\rho(D)}{m_D} \in F\}$, then 1 $\rho: \mathcal{D}_F \to \operatorname{cone}(F)$ is injective

2 $V(F) = \{\frac{\rho(D)}{m_D} \mid D \in D_F\} \cup C_F$, and $C_F \cup \rho(D_F)$ forms a basis of N

Theorem (Gagliardi-Hofscheier 2015)

X locally factorial Fano iff $(\Delta - \chi)^{\vee}$ is locally factorial G/H-reflexive

What's left to do?

Recall goal: classification of spherical Fano (locally factorial) fourfolds.

 \Rightarrow For each G/H, find all locally factorial G/H-reflexive polytopes.

Rk 1 or 2 rather straightforward **but** rank 3 is more involved!

[Batyrev] toric dim 3 or 4: relies on an understanding of explicit birational geometry of toric manifolds (at least, blowups).

The same understanding is desirable for spherical varieties. Case by case analysis?

Workaround: for rank three, dimension four spherical homogeneous spaces, if one forgets G/H the G/H-reflexive polytopes are smooth / canonical Fano toric polytopes, classified by [Batyrev, Watanabe-Watanabe] / [Kasprzyck]

Still WIP: canonical Fano toric = 674 688 polytopes **up to** $GL_3(\mathbb{Z})$ -action Want to impose as many conditions as possible before going through the list.