Effective K-stability of spherical varieties

Talk 1: Introduction to spherical varieties
via dimension four

Thibaut Delcroix

Université de Montpellier

Thibaut Delcroix (Montpellier) Introduction to spherical varieties



Motivation : Toric geometry

Definition

A normal n-dimensional algebraic variety X equipped with an effective action of a
torus (C*)" is called a toric variety.

toric variety X < fan

polarized toric variety (X", L) <> integral polytope A C R”
Fano toric variety (X, K;l) + reflexive polytope

admits a Kahler-Einstein metric <> Bar(A) =0

polarized toric variety (X, L) is K-(semi)stable <> explicit linear functional £
is non-negative on convex functions on A
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Other group actions

X normal complex algebraic variety
O
G connected complex reductive algebraic group

Basic data : complexity and rank
complexity of G v~ X := min codim of an orbit of a Borel subgroup B C G
weight lattice M := subgroup of weights of rational B-eigenfunctions
rank of G v~ X := rank of M

Definition: G \~ X spherical variety if complexity = 0

Theory of spherical varieties: a dictionary, as in the toric case

geometric <+ combinatorial / convex

[Luna-Vust 83, Brion, Knop,...]
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Recollections on reductive groups: root system

G D B Borel subgroup of G, T ~ (C*)" a maximal torus of B
X*(B) = X*(T) :={x: T — C* morphism} ~ Z" group of characters
® C X*(T) root system of (G, T), dt C @ roots of B.

0o = {x €g|Vte T,Ad(t)(x) = at)x}

s=toPoa b=to P ga

acd acdt

Example: GL,, B upper triangular matrices, T diagonal matrices
X*(T) generated by diag(as,...,an) — aj

& is the set of aj x : diag(a1, ..., an) = aj/ak for j # k, and g,;, = CEj «
Qjk € o iff j < k.
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First examples of spherical varieties

toric varieties are spherical

Bruhat decomposition = G/B spherical eg. PL=SL,/B
if BC PC G, G/P spherical e.g. SLz O P?

SL; acts on Sym, by congruences = SL, © IP? spherical
diagonal action of SL, on P! x P! is spherical

@ SL, xC* O P(1,1, k) spherical
SLy xC* O P(Opr & Opi(k)) spherical
These (plus invariant subvarieties) exhaust all 2-dim spherical varieties

Higher dimensions?
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Low dimensional spherical Fano manifolds

Dimension 3 Fano spherical: [Hofscheier PhD thesis 2015], not available online
WIP with Pierre-Louis Montagard: classification of spherical Fano fourfolds
Toric varieties:

» dimension 2 well-known

> dimension 3 [Batyrev, Watanabe-Watanabe]

> dimension 4 [Batyrev]

> dimension 5 to 8 by algorithm [Obro]

Only a question about special integral polytopes

Here, first obstacle: determine possible open orbits G/H. Only after, becomes
question about special rational polytopes.

Theorem [D.-Montagard, 2023]

Explicit classification of spherical homogeneous spaces of dimension 4.
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Strategy for classification of spherical G/H

Standing Assumption: G = G* x (C*)" with G*¢ semisimple, simply connected
— action of G*¢ on G/H has finite central kernel
— action of (C*)" on G/H is effective.

Theorem (Brion-Luna-Vust 1986)

Assume BH/H open in G/H. Let P = Stab(BH/H). There exists a Levi
subgroup L of P with connected center C such that PN H = LN H contains [L, L]
and the map

PYx C/(CNH)— BH/H, (p,x) = p-x

is an isomorphism.

In particular,

dim(G/H) = rank(G/H) +dim(G/P)

and under the standing assumption, P does not contain a simple factor of G.
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G rank(G) G/P dim(G/P)

SL, 1 P! 1
SLs 2 P2 2
SL2 2 P! x Pt 2
Sp, 2 Q3 3
SLs 2 w 3
Sp, 2 P3 3
SLy 3 P3 3
SL3 X SLQ 3 P? x P! 3
SL3 3 P! x P! x P! 3
SL3 X SL2 3 W x Pl 4
Sp, x SL» 3 Q3 x P! 4
SLy 3 Q* 4
Sp, x SLs 3 P3 x P! 4
SLs 4 P* 4
SL4 X SL2 4 IP3 X Pl 4
SL3 4 P2 x P? 4
SLs x SL2 4 P2 x P! x P! 4
SL; 4 P! x P! x P! x P! 4
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Recall
dim(G/H) = rank(G/H) + dim(G/P)

Consequence: strong restriction on possible G

If rank(G/H) = dim(G/H) then P = G = (C*)" and H trivial (toric case).
» If rank(G/H) = dim(G/H) — 1 then G** = SL,.

> If rank(G/H) = dim(G/H) — 2 then G* € {SL3,SL3}.

> If rank(G/H) = dim(G/H) — 3 then G* € {SLy4,Sp,, SL3 x SLy, SL3,SLs}.
» If rank(G/H) = 0 then H = P (homogeneous case)

v

If dim(G/H) < 4, need only consider those G*.

Furthermore: if rank(G/H) = 1, spherical homogeneous spaces classified up to
parabolic induction.
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Parabolic induction
G x (Go/Ho)
Q

under the action q - (g,x) = (gg—*,7(q) - x), for some m : @ — Gp epimorphism
from a proper parabolic subgroup @ of G to a connected reductive group Gy

G/H=

1

Example: SL, ~ C2\ {0} =SL,/ <(1) ) is obtained by parabolic induction:

*
1

Qz(é :) T Q — C*, (g f)b—>a

Special case: if Gy = (C*)" (< BY C H), say G/H is horospherical.

In general, it is characterized by Q" C H C @
or even, at the level of Lie algebras q“ C h C g
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Next step

Will come back to rank one spherical fourfolds later.

Next goal: classify spherical subgroup H of G = G*¢ x (C*)", with
dim(G/H) < 4 and G* € {SLy,SL3,SL3}

Algebraic subgroups of SL; are well-known

Lie subalgebras of sl3 and sl & sl up to conjugation have been classified
[Douglas-Repka 2016]

> Determine which correspond to spherical subgroups
> throw in a torus factor.

Upshot: most spherical homogeneous spaces are obtained by parabolic inductions!

Downside: higher dimension will be a combinatorial nightmare!
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Spherical subgroups of G = SL, x(C*)"

(Under standing assumption, up to conjugation and exterior automorphism)

o g (§ Snn)

B H= [a 8],3"",1...,1)}forsomemGZZo

a
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Spherical subgroups of G = SL3 x(C*)"

w; fundamental weights, x; projection to jth C* factor, @ maximal parabolic
Assume dim G/H < 4 and Aut®°(G/H) C G.

Up to conjugation and G-equivariant automorphism,

n=2 H=ker(mw; +x1: Q= C*)Nker(x2: @ - C*) for some m € Zxy,

n=1, H=ker(mw; +x1: Q — Gp)

n=1, H=ker(mwi + mwy+x1:B— Gp)
n=0,H=B

n=0H=Q

@A n=0H={(Q"T)

n=0, H=N({(Q", T))

n=0, H= 5(GL; x GL;) (only case not a parabolic induction)
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Spherical subgroups of G = SL3 x(C*)"
(dim(G/H) < 4, up to conjugation and G-equivariant automorphism)

G/H is obtained by parabolic induction

n =0 and H is one of the following:
diag(SL2)

N(diag(SL2))

T1 X T2

N(Tl) X T2

N(Ty) x N(T2)

(e (5o [5 )

diag(B1)
N(diag(B1)) = (diag(B1), (k, —k))
n =1 and H is one of the following:
diag(SL2) x {1}
N(diag(SL2)) x {1}
<d|ag(SL2)7 (/23 _/27 _1)>

EoE A

B
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Parabolic inductions for G = SL3 x (C*)"

Bn=0H=8B

B n=0H=BxT,

B n=0, H=B; x N(T)

n=0, H=ker(mw + mywy: T1 x By — C*)

]
s

I

o

i~ (et -5 S 20)

@ n=1, H=ker(mw+ mw,+ x1:B— C*)
n=1, H=ker(mw + mawy + x1: T1 X B, x C* = C*)
B n=

H= <T1 X kel’(mz’(ﬂz +X1 . Bz x C* — C*), <|:§-) _01:| s |:(£) 591:| ,:|:1>>

B n=2 H= ker(mlwl +x1:B— (C*) n ker(klwl + koo + x2: B — (C*)

Thibaut Delcroix (Montpellier) Introduction to spherical varieties 15/22



Remaining rank one cases

=

G = Sp, and H =SL, x Sp,
G = Sp, and H = Nsp, (SL2 x Sp,)

>

=

G =SL3 and H = B; x diag(SL,)

G =SL3 and H = By x Ng;3(diag(SL2))
G=SL3and H=B; x B, x T3

G =SL3 and H = By x By x Ngi,(T3)
G=Sl3xSl,and H=Q; x T»

G =SL3xSLy and H= Q1 x Nsi,(T?)

B B

[~ o

G= SLg xC* and H = ker(mywy + mywy + myws + x : B — C*)

G =SL3 xSLy xC* and H = ker(mywy + msws + x @ Q1 X By x C* — C*)
G = Sp, xC* and H = ker(miw1 + x : Qa,3 — C¥)

G = Sp, xC* and H = ker(mywa + x : Qqa,}; — C¥)

G =SLy xC* and H = ker(mywy + X : Qpayy — C*)

EEE &

H §
X
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Recollections on reductive groups: representations

Fix (-,-) a scalar product on X*(T) ® R extending the Killing product.

All finite dimensional representations of G are decomposable into direct sums
of irreducible representations.

There is a bijection between the set of dominant weights
{AeX*(T) | Va € &t (o, \) > 0} and the set of irreducible representations
of G up to isomorphism.

Explicitely, sending an irreducible representation V' to the weight A of the
unique B-eigenvector in V/, called the highest weight of V.

We denote by V) an irreducible representation with highest weight .
Positive Weyl chamber: (¢1)Y :={\ e X*(T) @R | Va € &, (o, \) > 0}

V= > v

AEX*(T)N(PT)V
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Recollection on G-varieties: Moment polytope

(X, L) polarized G-variety (i.e. L ample G-linearized line bundle on X)

Moment polytope
A = A(X, L) = Conv {%}

where k € Z~( and X runs over all characters of B such that there exists a
B-eigensection s € HO(X, L¥) with eigenvalue A:

Vbe B, b-s=A\(b)s

This is a convex polytope sitting inside the positive Weyl chamber of (G, T, B).
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Moment polytope for spherical varieties

X spherical G-variety, L ample G-linearized line bundle on X.
Fix s € HO(X, L¥) a B eigensection with weight ¥, then [Brion 1989]
HX, = P W
AEKAA—YEM
in particular, multiplicity free

Provides an expression for the dimension of H°(X, LX) for tomorrow, thanks to:

Weyl dimension formula
dim Vi = [T, co- <’\<“;2‘>’> where w =15 .. o J
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Combinatorial description [Brion 1989]

div(s) = >_ npD sum over B-stable prime divisor, np € Z.

D < ordp valuation on C(X) = C(G/H) — p(D) := ordp|pm € N = Hom(M, Z)
A—x={me M@R| p(D)(m)+ np > 0}

underlying data at the heart of a dictionary similar to that for toric varieties

A valuation of C(X) (the field of rational functions on X) is a group morphism
v : C(X)* — R such that v(C*) = {0} and v(f; + ) > minv(f;).
Valuation cone

The valuation cone V = V(G /H) of X is the image by p of the set of G-invariant
valuations of C(X). It is a rational polyedral cone in N ® R.

Colors
The set of colors D = D(G/H) is the set of B-stable prime divisors of G/H.

colored fans «» spherical embeddings G/H C X
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Fano spherical varieties

[Brion 1991] explicit Kx* = O(3_ mpD) with mp = 1 if D is G-stable
Definition

Polytope @ € N ® R with vertices V(Q) is locally factorial G/H-reflexive if
0 € Int(Q),
0 € Int(Q),

vD e D, 28 € q,
V(Q) C ((NmV)u{%),DeD}),

V facet F st cone(F) NInt(V) # 0, let De = {D € D | %L;) € F}, then
p : DF — cone(F) is injective
V(F) = {%g) | D € Dr} UCF, and Cr U p(DF) forms a basis of N

Theorem (Gagliardi-Hofscheier 2015)
X locally factorial Fano iff (A — x)" is locally factorial G /H-reflexive
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What's left to do?

Recall goal: classification of spherical Fano (locally factorial) fourfolds.

= For each G/H, find all locally factorial G/H-reflexive polytopes.
Rk 1 or 2 rather straightforward but rank 3 is more involved!

[Batyrev] toric dim 3 or 4: relies on an understanding of explicit birational
geometry of toric manifolds (at least, blowups).

The same understanding is desirable for spherical varieties. Case by case
analysis?

Workaround: for rank three, dimension four spherical homogeneous spaces, if one
forgets G/H the G/H-reflexive polytopes are smooth / canonical Fano toric
polytopes, classified by [Batyrev, Watanabe-Watanabe| / [Kasprzyck]

Still WIP: canonical Fano toric = 674 688 polytopes up to GL3(Z)-action
Want to impose as many conditions as possible before going through the list.
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