Un matroïde représentable sur aucun corps grâce au théorème de Pappus

On rappelle la définition de matroïde :

Définition 1. Soit X un ensemble fini, $\mathscr{P}(X)$ l'ensemble de ces parties et $\mathcal{I} \subset \mathscr{P}(X)$, alors (X, \mathcal{I}) est un matroïde si :

- (i) $\emptyset \in \mathcal{I}$;
- (ii) Pour tout $I \in \mathcal{I}$ et pour tout $J \in \mathcal{P}(X)$, si $J \subset I$ alors $J \in \mathcal{I}$;
- (iii) Pour tout $(I, J) \in \mathcal{I}^2$ tels que |I| < |J|, il existe $x \in J$ tel que $I \cup \{x\} \in \mathcal{I}$.

Dans la suite on supposera que $X = X_n := \{1, 2, \dots, n\}$.

- **Exemple(s) 1.** (i) Pour tout entier k, $0 \le k \le n$, on définit le matroïde uniforme $\mathcal{U}_{k,n}$, en définissant \mathcal{I} comme étant l'ensemble des parties de X_n contenant au plus k éléments.
 - (ii) Si V est un \mathbb{K} -espace vectoriel, et si $(v_1, v_2, \dots v_n)$ est une famille de vecteurs de V, alors on peut définir un matroïde (X_n, \mathcal{I}) en posant pour tout $J \in \mathcal{P}(X)$, $J \in \mathcal{I}$ si et seulement si $(v_i)_{i \in J}$ est une famille libre. Comme me l'a fait remarquer Thibaut, on doit considérer une famille pour pouvoir répéter plusieurs fois le même vecteur.

Définition 2. On dit qu'un matroïde (X_n, \mathcal{I}) est représentable sur un corps \mathbb{K} , s'il existe un \mathbb{K} -espace vectoriel V, et une famille $(v_1, v_2, \dots v_n)$ de vecteurs de V tels que $J \in \mathcal{I}$ si et seulement si la famille $(v_i)_{i \in J}$ est libre.

Avec cette définition le matroïde $\mathcal{U}_{1,2}$ est bien représentable sur \mathbb{F}_2 , il suffit de prendre une famille du type (v, v) avec v non nul.

On considère maintenant le matroïde $\mathscr{NP} = (X_9, \mathcal{I})$ (pour non-Pappus) suivant : au matroïde $\mathscr{U}_{3,9}$, on enlève les 8 parties suivantes :

$$\{1,2,3\}$$
 $\{4,5,6\}$ $\{1,5,7\}$ $\{1,6,8\}$ $\{2,4,7\}$ $\{2,6,9\}$ $\{3,4,8\}$ $\{3,5,9\}$.

Comme les parties de deux éléments de X_9 sont incluses dans au plus une des parties à 3 éléments enlevées, c'est bien un matroïde. Supposons qu'il existe une représentation de $\mathscr{N}\mathscr{P}$ sur \mathbb{K} donnée par une famille (v_1,\ldots,v_9) de vecteurs d'un espace V.

Comme les parties de plus de 4 éléments ne sont pas dans \mathcal{I} , en se restreignant à l'espace engendré par la famille (v_1, \ldots, v_9) on peut supposer que l'espace V est de dimension 3.

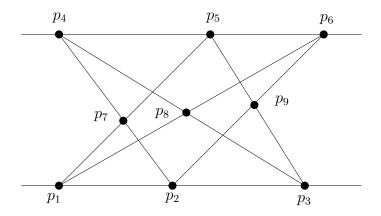
D'autre part, comme les singletons sont dans \mathcal{I} , pour tout $i \in X_9$, $v_i \neq 0$, on peut donc considérer (p_1, \ldots, p_9) les droites engendrées par (v_1, \ldots, v_9) dans le plan projectif $\mathbb{P}(V)$.

Par construction de \mathscr{NP} les ensembles des points suivants sont des ensemble de trois points alignés dans $\mathbb{P}(V)$:

$$\{p_1, p_2, p_3\} \{p_4, p_5, p_6\} \{p_1, p_5, p_7\} \{p_1, p_6, p_8\}$$

$$\{p_2, p_4, p_7\} \{p_2, p_6, p_9\} \{p_3, p_4, p_8\} \{p_3, p_5, p_9\}.$$

On a donc la configuration suivante :



Mais d'après le théorème de Pappus (qui est vrai sur tout corps) les points p_7, p_8 et p_9 sont alignés, ce qui est une contradiction puisque $\{7, 8, 9\} \in \mathcal{I}$.