Semisimple Principal Toric fibrations

Trung Nghiem

03/2022

Semisimple Principal Toric fibrations

▶ ★ 문 ▶ ★ 문 ▶

Semisimple Principal Toric fibrations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

э

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

Motivation

 (X, ω) compact Kähler manifold.

• Extend $\mathbf{M}_{v,w}$ to the space $\mathcal{E}^1(X,\omega)$ of ω_0 -psh of full mass and finite energy.

• • = • • = •

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

Motivation

 (X, ω) compact Kähler manifold.

Extend M_{v,w} to the space E¹(X, ω) of ω₀-psh of full mass and finite energy.
 Idea: Consider X as a fiber of a suitable *principal fibration* Y.
 Extend the unweighted M on E¹(Y, ω̃), (ω̃ Kähler from on Y constructed from ω), then restrict back to the fiber X to obtain the weighted extension.

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

Motivation

 (X, ω) compact Kähler manifold.

- Extend M_{v,w} to the space E¹(X, ω) of ω₀-psh of full mass and finite energy.
 Idea: Consider X as a fiber of a suitable *principal fibration* Y.
 Extend the unweighted M on E¹(Y, ω̃), (ω̃ Kähler from on Y constructed from ω), then restrict back to the fiber X to obtain the weighted extension.
- Extension of v-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).

通 と く ヨ と く ヨ と

э

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

Motivation

 (X, ω) compact Kähler manifold.

Extend M_{ν,w} to the space E¹(X, ω) of ω₀-psh of full mass and finite energy.
 Idea: Consider X as a fiber of a suitable *principal fibration* Y.

Extend the unweighted **M** on $\mathcal{E}^1(Y, \widetilde{\omega})$, ($\widetilde{\omega}$ Kähler from on Y constructed from ω), then restrict back to the fiber X to obtain the weighted extension.

 Extension of v-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).

Talk goals:

 Construction of a principal fibration from a principal bundle. Examples

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

Motivation

 (X, ω) compact Kähler manifold.

Extend M_{ν,w} to the space E¹(X, ω) of ω₀-psh of full mass and finite energy.
 Idea : Consider X as a fiber of a suitable principal fibration Y.

Extend the unweighted **M** on $\mathcal{E}^1(Y, \widetilde{\omega})$, ($\widetilde{\omega}$ Kähler from on Y constructed from ω), then restrict back to the fiber X to obtain the weighted extension.

 Extension of v-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).

Talk goals:

- Construction of a principal fibration from a principal bundle. Examples
- Compatible Kähler metrics. Embedding of potentials. An integration formula.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let (M^{2n}, ω) be a compact connected symplectic manifold with a smooth G-action.

Definition

The action of G is hamiltonian if there exists a map:

$$\mu_{\omega}: M \to \mathfrak{g}^*$$

such that :

• For each $\xi \in \mathfrak{g}$, every component of μ_{ω} along ξ is hamiltonian, i.e. $d \langle \mu_{\omega}, \xi \rangle = i_{\xi} \omega$.

Let (M^{2n}, ω) be a compact connected symplectic manifold with a smooth G-action.

Definition

The action of G is hamiltonian if there exists a map:

$$\mu_{\omega}: M \to \mathfrak{g}^*$$

such that :

• For each $\xi \in \mathfrak{g}$, every component of μ_{ω} along ξ is hamiltonian, i.e. $d \langle \mu_{\omega}, \xi \rangle = i_{\xi} \omega$.

• μ_{ω} is compatible with *G* and the coadjoint Ad^{*} actions.

マット きょう きょうしょう

Let (M^{2n}, ω) be a compact connected symplectic manifold with a smooth G-action.

Definition

The action of G is hamiltonian if there exists a map:

$$\mu_\omega: M o \mathfrak{g}^*$$

such that :

• For each $\xi \in \mathfrak{g}$, every component of μ_{ω} along ξ is hamiltonian, i.e. $d \langle \mu_{\omega}, \xi \rangle = i_{\xi} \omega$.

• μ_{ω} is compatible with *G* and the coadjoint Ad^{*} actions.

Atiyah-Guillemin-Sternberg : image of μ_{ω} is a polytope Δ .

マット きょう きょうしょう

Let (M^{2n}, ω) be a compact connected symplectic manifold with a smooth G-action.

Definition

The action of G is hamiltonian if there exists a map:

$$\mu_\omega: \mathcal{M} o \mathfrak{g}^*$$

such that :

• For each $\xi \in \mathfrak{g}$, every component of μ_{ω} along ξ is hamiltonian, i.e. $d \langle \mu_{\omega}, \xi \rangle = i_{\xi} \omega$.

• μ_{ω} is compatible with *G* and the coadjoint Ad^{*} actions.

Atiyah-Guillemin-Sternberg : image of μ_{ω} is a polytope Δ . On Kähler manifold if $\omega_{\phi} = \omega + dd^{c}\phi$, $\mu_{\phi} = \mu + d^{c}\phi$.

Let (M^{2n}, ω) be a compact connected symplectic manifold with a smooth G-action.

Definition

The action of G is hamiltonian if there exists a map:

$$\mu_{\omega}: M \to \mathfrak{g}^*$$

such that :

• For each $\xi \in \mathfrak{g}$, every component of μ_{ω} along ξ is hamiltonian, i.e. $d \langle \mu_{\omega}, \xi \rangle = i_{\xi} \omega$.

• μ_{ω} is compatible with *G* and the coadjoint Ad^{*} actions.

Atiyah-Guillemin-Sternberg : image of μ_{ω} is a polytope Δ . On Kähler manifold if $\omega_{\phi} = \omega + dd^c \phi$, $\mu_{\phi} = \mu + d^c \phi$. Guiding example throughout the talk :

Example

$$(X, \omega, \mathbb{S}^1) = (\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1). \ \mu_{\omega_{FS}}(\mathbb{P}^1) = [-1/2, 0].$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition

A principal bundle P over B with Lie group G consists of:

A smooth surjective map π_P : P → B and a smooth free action of G on P on the right.

э

Definition

A principal bundle P over B with Lie group G consists of:

• A smooth surjective map $\pi_P : P \to B$ and a smooth free action of G on P on the right.

■ *P* is locally trivial and the local trivialization $\pi_P^{-1}(U) \to U \times G$, $u \to (\pi(p), \phi(p))$ is compatible with *G*, i.e. $\phi(ua) = \phi(u)a$.

Definition

A principal bundle P over B with Lie group G consists of:

• A smooth surjective map $\pi_P : P \to B$ and a smooth free action of G on P on the right.

P is locally trivial and the local trivialization $\pi_P^{-1}(U) \to U \times G$, $u \to (\pi(p), \phi(p))$ is compatible with G, i.e. $\phi(ua) = \phi(u)a$.

Equivalent definition : open cover (U_{α}) of B with transition maps : $\phi_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle condition.

コン・ボリン・ ビット しょう

Definition

A principal bundle P over B with Lie group G consists of:

- A smooth surjective map $\pi_P : P \to B$ and a smooth free action of G on P on the right.
- P is locally trivial and the local trivialization $\pi_P^{-1}(U) \to U \times G$, $u \to (\pi(p), \phi(p))$ is compatible with G, i.e. $\phi(ua) = \phi(u)a$.

Equivalent definition : open cover (U_{α}) of B with transition maps : $\phi_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle condition.

Property

We have $C^{\infty}(B) \simeq C^{\infty}_{G}(P)$

向下 イヨト イヨト ニヨ

Definition

A principal bundle P over B with Lie group G consists of:

- A smooth surjective map $\pi_P : P \to B$ and a smooth free action of G on P on the right.
- P is locally trivial and the local trivialization $\pi_P^{-1}(U) \to U \times G$, $u \to (\pi(p), \phi(p))$ is compatible with G, i.e. $\phi(ua) = \phi(u)a$.

Equivalent definition : open cover (U_{α}) of B with transition maps : $\phi_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle condition.

Property

We have $C^{\infty}(B) \simeq C^{\infty}_{G}(P)$

Example

 A line bundle L with zero section removed is a principal C*-bundle (e.g. O(-1)\{0} ≃ C²\{0} affine cone w.o. vertex over B = P¹).

Definition

A principal bundle P over B with Lie group G consists of:

- A smooth surjective map $\pi_P : P \to B$ and a smooth free action of G on P on the right.
- P is locally trivial and the local trivialization $\pi_P^{-1}(U) \to U \times G$, $u \to (\pi(p), \phi(p))$ is compatible with G, i.e. $\phi(ua) = \phi(u)a$.

Equivalent definition : open cover (U_{α}) of B with transition maps : $\phi_{\alpha,\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle condition.

Property

We have $C^{\infty}(B) \simeq C^{\infty}_{G}(P)$

Example

- A line bundle L with zero section removed is a principal C*-bundle (e.g. O(-1)\{0} ≃ C²\{0} affine cone w.o. vertex over B = P¹).
- The principal S¹-bundle U(1) over P¹, constructed from O(-1) {0}, by the choice of a hermitian metrics on O(-1) (the Hopf fibration).

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

通 と く ヨ と く ヨ と

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

The projection map $\pi_Y : Y \to B$ is given by $\pi_Y([p,x]) = \pi_P(p)$.

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

The projection map $\pi_Y : Y \to B$ is given by $\pi_Y([p,x]) = \pi_P(p)$.

Remark

• Y is the base space of the principal bundle $X \times P \rightarrow Y$.

向下 イヨト イヨト ニヨ

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

The projection map $\pi_Y : Y \to B$ is given by $\pi_Y([p,x]) = \pi_P(p)$.

Remark

- Y is the base space of the principal bundle $X \times P \rightarrow Y$.
- Y is a itself a fibration over B of fiber X.

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

The projection map $\pi_Y : Y \to B$ is given by $\pi_Y([p,x]) = \pi_P(p)$.

Remark

- Y is the base space of the principal bundle $X \times P \rightarrow Y$.
- Y is a itself a fibration over B of fiber X.

Example

Consider (X, ω, S¹) = (P¹, ω_{FS}, S¹) and P = U(1) the Hopf fibration over B = P¹). The principal fibration Y := (U(1) × P¹)/S¹ ≃ P(O ⊕ O(-1)) is a Hirzebruch-type surface.

Let P = P(B, G) be a principal bundle and X a G-manifold. The quotient $Y = (P \times X)/G$ by the product action $g.(p, x) \rightarrow (pg, g^{-1}x)$, if exists, is called the *principal fibration* (or bundle) associated to P with fiber X and base B.

The projection map $\pi_Y : Y \to B$ is given by $\pi_Y([p,x]) = \pi_P(p)$.

Remark

- Y is the base space of the principal bundle $X \times P \rightarrow Y$.
- Y is a itself a fibration over B of fiber X.

Example

Consider (X, ω, S¹) = (P¹, ω_{FS}, S¹) and P = U(1) the Hopf fibration over B = P¹). The principal fibration Y := (U(1) × P¹)/S¹ ≃ P(O ⊕ O(-1)) is a Hirzebruch-type surface.
Other Hirzeburch surfaces : (U(k) × P¹)/S¹ ≃ P(O ⊕ O(-k)). Here U(k) is the circle bundle of O(-k).

Let $A_*(p) = (d/dt)_{t=0} p.e^{tA}$ be the vector field generated by $A \in \mathfrak{g}$.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

Let $A_*(p) = (d/dt)_{t=0} p.e^{tA}$ be the vector field generated by $A \in \mathfrak{g}$. $A \to A_*(p)$ identifies \mathfrak{g} with the vertical tangent space $G_p \simeq \ker d\pi_p$.

Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset TP$ s.t. $H_p \oplus G_p = T_p P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^1(P, \mathfrak{g})$ s.t. $\theta(A_*) = A$ with ker $\theta := H$.

Let $A_*(p) = (d/dt)_{t=0} p.e^{tA}$ be the vector field generated by $A \in \mathfrak{g}$. $A \to A_*(p)$ identifies \mathfrak{g} with the vertical tangent space $G_p \simeq \ker d\pi_p$.

Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset TP$ s.t. $H_p \oplus G_p = T_p P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^1(P, \mathfrak{g})$ s.t. $\theta(A_*) = A$ with ker $\theta := H$.

Let $A_*(p) = (d/dt)_{t=0} p.e^{tA}$ be the vector field generated by $A \in \mathfrak{g}$. $A \to A_*(p)$ identifies \mathfrak{g} with the vertical tangent space $G_p \simeq \ker d\pi_p$.

Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset TP$ s.t. $H_p \oplus G_p = T_p P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^1(P, \mathfrak{g})$ s.t. $\theta(A_*) = A$ with ker $\theta := H$.

Fact

Every principal bundle admits a connection.

向 ト イヨ ト イヨ ト

Let $A_*(p) = (d/dt)_{t=0} p.e^{tA}$ be the vector field generated by $A \in \mathfrak{g}$. $A \to A_*(p)$ identifies \mathfrak{g} with the vertical tangent space $G_p \simeq \ker d\pi_p$.

Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset TP$ s.t. $H_p \oplus G_p = T_p P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^1(P, \mathfrak{g})$ s.t. $\theta(A_*) = A$ with ker $\theta := H$.

Fact

Every principal bundle admits a connection.

A connection θ on P induces a connection θ on $X \times P$, hence a horizontal distribution on $X \times P$, identified TY, $Y = (X \times P)/G$:

 $TY \simeq TX \oplus TB$

레이 시코이 시코이 드로

Definition

Given the data

• $(X, \omega, \mathbb{T}_X^r)$ compact Kähler 2*m*-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t}/2\pi\Lambda$, Λ a lattice with basis $\{\xi_i, \ldots, \xi_r\}$.

Semisimple Principal Toric fibrations

э

Definition

Given the data

• $(X, \omega, \mathbb{T}_X^r)$ compact Kähler 2*m*-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t}/2\pi\Lambda$, Λ a lattice with basis $\{\xi_i, \ldots, \xi_r\}$.

• Compact Hodge (i.e. projective) cscK manifold (B^{2n}, ω_B)

Semisimple Principal Toric fibrations

• • = • • = •

э

Definition

Given the data

- $(X, \omega, \mathbb{T}_X^r)$ compact Kähler 2*m*-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t}/2\pi\Lambda$, Λ a lattice with basis $\{\xi_i, \ldots, \xi_r\}$.
- Compact Hodge (i.e. projective) cscK manifold (B^{2n}, ω_B)
- Principal \mathbb{T}_P -bundle $\pi : P \to B$ with connection 1-form θ with horizontal distribution $H \simeq TB$ and curvature $d\theta = \pi^* \omega_B \otimes p$, $p \in \Lambda$.

Definition

Given the data

- $(X, \omega, \mathbb{T}_X^r)$ compact Kähler 2*m*-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t}/2\pi\Lambda$, Λ a lattice with basis $\{\xi_i, \ldots, \xi_r\}$.
- Compact Hodge (i.e. projective) cscK manifold (B^{2n}, ω_B)
- Principal \mathbb{T}_{P} -bundle $\pi: P \to B$ with connection 1-form θ with horizontal distribution $H \simeq TB$ and curvature $d\theta = \pi^* \omega_B \otimes p$, $p \in \Lambda$.

we obtain the principal fibration $Y := (X \times P)/\mathbb{T}_{X \times P}$ with a complex structure given by $(TY, J_Y) \simeq (TX \oplus TB, J_X \oplus J_B)$ and $\theta = 0$ on $TX \oplus TB$. Action on $X \times P : t(x, p) := (tx, pt^{-1})$.

Remark

• Can work with $B = B_1 \times \cdots \times B_k$ (B_i Hodge cscK). But to simplify, k = 1.

Definition

Given the data

- $(X, \omega, \mathbb{T}_X^r)$ compact Kähler 2*m*-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t}/2\pi\Lambda$, Λ a lattice with basis $\{\xi_i, \ldots, \xi_r\}$.
- Compact Hodge (i.e. projective) cscK manifold (B^{2n}, ω_B)
- Principal \mathbb{T}_P -bundle $\pi : P \to B$ with connection 1-form θ with horizontal distribution $H \simeq TB$ and curvature $d\theta = \pi^* \omega_B \otimes p$, $p \in \Lambda$.

we obtain the principal fibration $Y := (X \times P)/\mathbb{T}_{X \times P}$ with a complex structure given by $(TY, J_Y) \simeq (TX \oplus TB, J_X \oplus J_B)$ and $\theta = 0$ on $TX \oplus TB$. Action on $X \times P : t(x, p) := (tx, pt^{-1})$.

Remark

• Can work with $B = B_1 \times \cdots \times B_k$ (B_i Hodge cscK). But to simplify, k = 1.

■ T-principal bundle over *B* with curvature $d\theta \iff$ Fiberwise product of *r* principal S¹-bundle $U_i(1)$ associated to *r* hermitian line bundles L_i over *B* with $2\pi c_1(L_i) = p_i \pi^* \omega_B$, where $p = \sum_{i=1}^r p_i \xi_i$.

Bundle compatible metrics

Example

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

白 ト イヨ ト イヨ ト

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates.

向下 イヨト イヨト ニヨ

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $TX \oplus TB$.

向下 イヨト イヨト ニヨ

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $TX \oplus TB$.

Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on Y is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega} = \omega_h + \omega_v$ where

• $\omega_h := \omega + (\langle p, \mu_\omega \rangle + c) \pi_B^* \omega_B$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\langle p, \mu_\omega \rangle + c > 0$ on the moment polytope.

同下 イヨト イヨト ニヨ

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $TX \oplus TB$.

Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on Y is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega} = \omega_h + \omega_v$ where

• $\omega_h := \omega + (\langle p, \mu_\omega \rangle + c) \pi_B^* \omega_B$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\langle p, \mu_\omega \rangle + c > 0$ on the moment polytope.

•
$$\omega_{\mathbf{v}} := \langle \mathbf{d}\mu_{\omega} \wedge \theta \rangle.$$

伺下 イヨト イヨト ニヨ

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $TX \oplus TB$.

Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on Y is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega} = \omega_h + \omega_v$ where

• $\omega_h := \omega + (\langle p, \mu_\omega \rangle + c) \pi_B^* \omega_B$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\langle p, \mu_\omega \rangle + c > 0$ on the moment polytope.

•
$$\omega_{\mathbf{v}} := \langle d\mu_{\omega} \wedge \theta \rangle.$$

Equivalently :

$$\widetilde{\omega} = \omega + c(\pi_B^*\omega_B) + d \left< \mu_\omega, heta
ight>$$

 $(\mathbb{P}^1, \omega_{FS}, \mathbb{S}^1)$, $(B, \omega_B) = (\mathbb{P}^1, \omega_{FS})$ with principal bundle $\mathcal{U}(1)$, and Y is the Hirzebruch complex surface $\mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P :=$ pullback of forms on Y (\iff forms that are $\mathbb{T}_{X \times P}$ -invariant and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $TX \oplus TB$.

Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on Y is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega} = \omega_h + \omega_v$ where

• $\omega_h := \omega + (\langle p, \mu_\omega \rangle + c) \pi_B^* \omega_B$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\langle p, \mu_\omega \rangle + c > 0$ on the moment polytope.

•
$$\omega_{\mathbf{v}} := \langle d\mu_{\omega} \wedge \theta \rangle.$$

Equivalently :

$$\widetilde{\omega} = \omega + c(\pi_B^*\omega_B) + d \left< \mu_\omega, heta
ight>$$

Positive definite + basic + closed $\Rightarrow \widetilde{\omega}$ descends to a Kähler form on Y.

同 ト イヨ ト イヨ ト 二 ヨ

 $C^{\infty}_{\mathbb{T}}(X)$, $C^{\infty}_{\mathbb{T}}(Y) :=$ smooth \mathbb{T} -invariant functions on X and Y.

Semisimple Principal Toric fibrations

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

$$C^{\infty}_{\mathbb{T}}(Y) \simeq C^{\infty}_{\mathbb{T}_{X},\mathbb{T}_{P}}(X \times P) \simeq C^{\infty}_{\mathbb{T}_{X}}(X \times B)$$

Semisimple Principal Toric fibrations

∃ < n < 0</p>

$$C^{\infty}_{\mathbb{T}}(Y) \simeq C^{\infty}_{\mathbb{T}_{X},\mathbb{T}_{P}}(X \times P) \simeq C^{\infty}_{\mathbb{T}_{X}}(X \times B)$$

Moreover,

$$C^{\infty}_{\mathbb{T}}(X) \simeq \left\{ \psi \in C^{\infty}_{\mathbb{T}_{X}}(X \times B), d_{B}\psi_{|\{x\} \times B} = 0, \forall x \in X \right\}$$

so $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y).$

回 と く ヨ と く ヨ と

∃ < n < 0</p>

$$C^{\infty}_{\mathbb{T}}(Y) \simeq C^{\infty}_{\mathbb{T}_X,\mathbb{T}_P}(X \times P) \simeq C^{\infty}_{\mathbb{T}_X}(X \times B)$$

Moreover,

$$\mathcal{C}^\infty_{\mathbb{T}}(X)\simeqig\{\psi\in\mathcal{C}^\infty_{\mathbb{T}_X}(X imes B), d_B\psi_{|\{x\} imes B}=0, orall x\in Xig\}$$

so $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$.

Embedding of potentials

The embedding $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$ induces a well-defined embedding of Kähler potentials $\mathcal{K}_{\mathbb{T}}(X,\omega) \hookrightarrow \mathcal{K}_{\mathbb{T}}(Y,\widetilde{\omega})$ In other words, if $\omega_{\phi} = \omega + d_X d_X^c \phi$ then $\widetilde{\omega}_{\phi} = \widetilde{\omega} + d_Y d_Y^c \phi$, i.e. the map $[\omega] \to [\widetilde{\omega}]$ is well-defined.

白 マイド・・ マックの

$$C^{\infty}_{\mathbb{T}}(Y) \simeq C^{\infty}_{\mathbb{T}_X,\mathbb{T}_P}(X \times P) \simeq C^{\infty}_{\mathbb{T}_X}(X \times B)$$

Moreover,

$$\mathcal{C}^\infty_{\mathbb{T}}(X)\simeqig\{\psi\in\mathcal{C}^\infty_{\mathbb{T}_X}(X imes B), d_B\psi_{|\{x\} imes B}=0, orall x\in Xig\}$$

so $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$.

Embedding of potentials

The embedding $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$ induces a well-defined embedding of Kähler potentials $\mathcal{K}_{\mathbb{T}}(X,\omega) \hookrightarrow \mathcal{K}_{\mathbb{T}}(Y,\widetilde{\omega})$ In other words, if $\omega_{\phi} = \omega + d_X d_X^c \phi$ then $\widetilde{\omega}_{\phi} = \widetilde{\omega} + d_Y d_Y^c \phi$, i.e. the map $[\omega] \to [\widetilde{\omega}]$ is well-defined.

Sketch of proof : Let μ_{ϕ} be the moment map of ω_{ϕ} . By the equality :

$$\mu_{\phi} = \mu + d_X^c \phi$$

we see that $\widetilde{\omega}_{\phi} = \widetilde{\omega} + d_Y d_Y^c \phi$ is equivalent to

$$d_Y^c \phi = d_X^c \phi + \langle d_X^c \phi, \theta \rangle$$

$$C^{\infty}_{\mathbb{T}}(Y) \simeq C^{\infty}_{\mathbb{T}_X,\mathbb{T}_P}(X \times P) \simeq C^{\infty}_{\mathbb{T}_X}(X \times B)$$

Moreover,

$$\mathcal{C}^{\infty}_{\mathbb{T}}(X) \simeq \left\{ \psi \in \mathcal{C}^{\infty}_{\mathbb{T}_{X}}(X imes B), d_{B}\psi_{|\{x\} imes B} = 0, orall x \in X
ight\}$$

so $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$.

Embedding of potentials

The embedding $C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$ induces a well-defined embedding of Kähler potentials $K_{\mathbb{T}}(X,\omega) \hookrightarrow K_{\mathbb{T}}(Y,\widetilde{\omega})$ In other words, if $\omega_{\phi} = \omega + d_X d_X^c \phi$ then $\widetilde{\omega}_{\phi} = \widetilde{\omega} + d_Y d_Y^c \phi$, i.e. the map $[\omega] \to [\widetilde{\omega}]$ is well-defined.

Sketch of proof : Let μ_{ϕ} be the moment map of ω_{ϕ} . By the equality :

$$\mu_{\phi} = \mu + d_X^c \phi$$

we see that $\widetilde{\omega}_{\phi} = \widetilde{\omega} + d_Y d_Y^c \phi$ is equivalent to

$$d_Y^c \phi = d_X^c \phi + \langle d_X^c \phi, \theta \rangle$$

Both sides vanish on vertical vectors (vectors generated by local generator of $\mathfrak{t}_{X,P}$) and equal on horizontal vectors

By compatibility, on the horizontal part of $X \times P$:

$$\widetilde{\omega}_{\phi} = \omega_{\phi} + (\left\langle \pmb{p}, \mu_{\omega_{\phi}}
ight
angle + \pmb{c}) \pi^*_B \omega_B$$

白マ・キョン・キョン

By compatibility, on the horizontal part of $X \times P$:

$$\widetilde{\omega}_{\phi} = \omega_{\phi} + (\langle p, \mu_{\omega_{\phi}}
angle + c) \pi_B^* \omega_B$$

$$\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}} = \det \begin{pmatrix} \mathsf{Id} & 0\\ 0 & \langle p, \mu_{\phi} \rangle + c \end{pmatrix} = \langle p, \mu_{\phi} \rangle + c$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

By compatibility, on the horizontal part of $X \times P$:

$$\widetilde{\omega}_{\phi} = \omega_{\phi} + (\left\langle \pmb{p}, \mu_{\omega_{\phi}}
ight
angle + \pmb{c}) \pi^*_B \omega_B$$

$$\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}} = \det \begin{pmatrix} \mathsf{Id} & 0\\ 0 & \langle p, \mu_{\phi} \rangle + c \end{pmatrix} = \langle p, \mu_{\phi} \rangle + c$$

If $B = B_1 \times \cdots \times B_k$, then $p = \prod_{i=1}^k (\langle p_i, \mu_{\phi} \rangle + c_i)$.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

By compatibility, on the horizontal part of $X \times P$:

$$\widetilde{\omega}_{\phi} = \omega_{\phi} + (\left\langle p, \mu_{\omega_{\phi}}
ight
angle + c) \pi^*_B \omega_B$$

$$\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}} = \det \begin{pmatrix} \mathsf{Id} & 0\\ 0 & \langle p, \mu_{\phi} \rangle + c \end{pmatrix} = \langle p, \mu_{\phi} \rangle + c$$

If $B = B_1 \times \cdots \times B_k$, then $p = \prod_{i=1}^k (\langle p_i, \mu_{\phi} \rangle + c_i)$. Hence for all $f \in C^{\infty}_{\mathbb{T}}(X) \hookrightarrow C^{\infty}_{\mathbb{T}}(Y)$:

$$\int_{Y} f\widetilde{\omega}_{\phi}^{[n+b]} = \operatorname{vol}(B, \omega_{B}) \int_{X} p(\mu_{\phi}) f\omega_{\phi}^{[n]}$$

Allows construction of the weighted Monge-Ampère measure !