# Semisimple Principal Toric fibrations 

Trung Nghiem

03/2022

## Background and Motivation

- The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.


## Background and Motivation

- The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.


## Motivation

$(X, \omega)$ compact Kähler manifold.
■ Extend $\mathbf{M}_{v, \omega}$ to the space $\mathcal{E}^{1}(X, \omega)$ of $\omega_{0}$-psh of full mass and finite energy.

## Background and Motivation

■ The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.

## Motivation

$(X, \omega)$ compact Kähler manifold.

- Extend $\mathbf{M}_{v, \omega}$ to the space $\mathcal{E}^{1}(X, \omega)$ of $\omega_{0}$-psh of full mass and finite energy.
Idea : Consider $X$ as a fiber of a suitable principal fibration $Y$. Extend the unweighted $\mathbf{M}$ on $\mathcal{E}^{1}(Y, \widetilde{\omega})$, ( $\widetilde{\omega}$ Kähler from on $Y$ constructed from $\omega$ ), then restrict back to the fiber $X$ to obtain the weighted extension.


## Background and Motivation

- The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.


## Motivation

$(X, \omega)$ compact Kähler manifold.

- Extend $\mathbf{M}_{v, w}$ to the space $\mathcal{E}^{1}(X, \omega)$ of $\omega_{0}$-psh of full mass and finite energy.
Idea : Consider $X$ as a fiber of a suitable principal fibration $Y$. Extend the unweighted $\mathbf{M}$ on $\mathcal{E}^{1}(Y, \widetilde{\omega})$, ( $\widetilde{\omega}$ Kähler from on $Y$ constructed from $\omega$ ), then restrict back to the fiber $X$ to obtain the weighted extension.
- Extension of $v$-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).


## Background and Motivation

- The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.


## Motivation

$(X, \omega)$ compact Kähler manifold.

- Extend $\mathbf{M}_{v, w}$ to the space $\mathcal{E}^{1}(X, \omega)$ of $\omega_{0}$-psh of full mass and finite energy.
Idea : Consider $X$ as a fiber of a suitable principal fibration $Y$. Extend the unweighted $\mathbf{M}$ on $\mathcal{E}^{1}(Y, \widetilde{\omega})$, ( $\widetilde{\omega}$ Kähler from on $Y$ constructed from $\omega$ ), then restrict back to the fiber $X$ to obtain the weighted extension.
- Extension of $v$-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).


## Talk goals:

- Construction of a principal fibration from a principal bundle. Examples


## Background and Motivation

- The construction goes back to Donaldson. His goal : to prove equivariant Riemann-Roch for singular projective variety from non-equivariant Riemann-Roch.


## Motivation

$(X, \omega)$ compact Kähler manifold.

- Extend $\mathbf{M}_{v, w}$ to the space $\mathcal{E}^{1}(X, \omega)$ of $\omega_{0}$-psh of full mass and finite energy.
Idea : Consider $X$ as a fiber of a suitable principal fibration $Y$. Extend the unweighted $\mathbf{M}$ on $\mathcal{E}^{1}(Y, \widetilde{\omega})$, ( $\widetilde{\omega}$ Kähler from on $Y$ constructed from $\omega$ ), then restrict back to the fiber $X$ to obtain the weighted extension.
- Extension of $v$-MA-measures to the space of finite energy (Han-Li, Berman-Witt-Nyström).


## Talk goals:

- Construction of a principal fibration from a principal bundle. Examples
- Compatible Kähler metrics. Embedding of potentials. An integration formula.


## Hamiltonian actions

Let $\left(M^{2 n}, \omega\right)$ be a compact connected symplectic manifold with a smooth $G$-action.

## Definition

The action of $G$ is hamiltonian if there exists a map:

$$
\mu_{\omega}: M \rightarrow \mathfrak{g}^{*}
$$

such that :
■ For each $\xi \in \mathfrak{g}$, every component of $\mu_{\omega}$ along $\xi$ is hamiltonian, i.e. $d\left\langle\mu_{\omega}, \xi\right\rangle=i_{\xi} \omega$.

## Hamiltonian actions

Let $\left(M^{2 n}, \omega\right)$ be a compact connected symplectic manifold with a smooth $G$-action.

## Definition

The action of $G$ is hamiltonian if there exists a map:

$$
\mu_{\omega}: M \rightarrow \mathfrak{g}^{*}
$$

such that :

- For each $\xi \in \mathfrak{g}$, every component of $\mu_{\omega}$ along $\xi$ is hamiltonian, i.e. $d\left\langle\mu_{\omega}, \xi\right\rangle=i_{\xi} \omega$.
- $\mu_{\omega}$ is compatible with $G$ and the coadjoint $\mathrm{Ad}^{*}$ actions.


## Hamiltonian actions

Let $\left(M^{2 n}, \omega\right)$ be a compact connected symplectic manifold with a smooth $G$-action.

## Definition

The action of $G$ is hamiltonian if there exists a map:

$$
\mu_{\omega}: M \rightarrow \mathfrak{g}^{*}
$$

such that:

- For each $\xi \in \mathfrak{g}$, every component of $\mu_{\omega}$ along $\xi$ is hamiltonian, i.e. $d\left\langle\mu_{\omega}, \xi\right\rangle=i_{\xi} \omega$.
- $\mu_{\omega}$ is compatible with $G$ and the coadjoint $\mathrm{Ad}^{*}$ actions.

Atiyah-Guillemin-Sternberg : image of $\mu_{\omega}$ is a polytope $\Delta$.

## Hamiltonian actions

Let $\left(M^{2 n}, \omega\right)$ be a compact connected symplectic manifold with a smooth $G$-action.

## Definition

The action of $G$ is hamiltonian if there exists a map:

$$
\mu_{\omega}: M \rightarrow \mathfrak{g}^{*}
$$

such that:

- For each $\xi \in \mathfrak{g}$, every component of $\mu_{\omega}$ along $\xi$ is hamiltonian, i.e. $d\left\langle\mu_{\omega}, \xi\right\rangle=i_{\xi} \omega$.
- $\mu_{\omega}$ is compatible with $G$ and the coadjoint $\mathrm{Ad}^{*}$ actions.

Atiyah-Guillemin-Sternberg : image of $\mu_{\omega}$ is a polytope $\Delta$. On Kähler manifold if $\omega_{\phi}=\omega+d d^{c} \phi, \mu_{\phi}=\mu+d^{c} \phi$.

## Hamiltonian actions

Let $\left(M^{2 n}, \omega\right)$ be a compact connected symplectic manifold with a smooth $G$-action.

## Definition

The action of $G$ is hamiltonian if there exists a map:

$$
\mu_{\omega}: M \rightarrow \mathfrak{g}^{*}
$$

such that:

- For each $\xi \in \mathfrak{g}$, every component of $\mu_{\omega}$ along $\xi$ is hamiltonian, i.e. $d\left\langle\mu_{\omega}, \xi\right\rangle=i_{\xi} \omega$.
- $\mu_{\omega}$ is compatible with $G$ and the coadjoint $\mathrm{Ad}^{*}$ actions.

Atiyah-Guillemin-Sternberg : image of $\mu_{\omega}$ is a polytope $\Delta$. On Kähler manifold if $\omega_{\phi}=\omega+d d^{c} \phi, \mu_{\phi}=\mu+d^{c} \phi$. Guiding example throughout the talk:

## Example

$\left(X, \omega, \mathbb{S}^{1}\right)=\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right) . \mu_{\omega_{F S}}\left(\mathbb{P}^{1}\right)=[-1 / 2,0]$.

## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.


## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.
- $P$ is locally trivial and the local trivialization $\pi_{P}^{-1}(U) \rightarrow U \times G$, $u \rightarrow(\pi(p), \phi(p))$ is compatible with $G$, i.e. $\phi(u a)=\phi(u) a$.


## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.
- $P$ is locally trivial and the local trivialization $\pi_{P}^{-1}(U) \rightarrow U \times G$, $u \rightarrow(\pi(p), \phi(p))$ is compatible with $G$, i.e. $\phi(u a)=\phi(u)$ a.

Equivalent definition : open cover $\left(U_{\alpha}\right)$ of $B$ with transition maps : $\phi_{\alpha, \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ satisfying the cocycle condition.

## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.
- $P$ is locally trivial and the local trivialization $\pi_{P}^{-1}(U) \rightarrow U \times G$, $u \rightarrow(\pi(p), \phi(p))$ is compatible with $G$, i.e. $\phi(u a)=\phi(u)$ a.

Equivalent definition : open cover $\left(U_{\alpha}\right)$ of $B$ with transition maps : $\phi_{\alpha, \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ satisfying the cocycle condition.

Property
We have $C^{\infty}(B) \simeq C_{G}^{\infty}(P)$

## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.
- $P$ is locally trivial and the local trivialization $\pi_{P}^{-1}(U) \rightarrow U \times G$, $u \rightarrow(\pi(p), \phi(p))$ is compatible with $G$, i.e. $\phi(u a)=\phi(u)$ a.

Equivalent definition : open cover $\left(U_{\alpha}\right)$ of $B$ with transition maps : $\phi_{\alpha, \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ satisfying the cocycle condition.

## Property

We have $C^{\infty}(B) \simeq C_{G}^{\infty}(P)$

## Example

- A line bundle $L$ with zero section removed is a principal $\mathbb{C}^{*}$-bundle (e.g. $\mathcal{O}(-1) \backslash\{0\} \simeq \mathbb{C}^{2} \backslash\{0\}$ affine cone w.o. vertex over $B=\mathbb{P}^{1}$ ).


## Principal bundles

## Definition

A principal bundle $P$ over $B$ with Lie group $G$ consists of:

- A smooth surjective map $\pi_{P}: P \rightarrow B$ and a smooth free action of $G$ on $P$ on the right.
- $P$ is locally trivial and the local trivialization $\pi_{P}^{-1}(U) \rightarrow U \times G$, $u \rightarrow(\pi(p), \phi(p))$ is compatible with $G$, i.e. $\phi(u a)=\phi(u)$ a.

Equivalent definition : open cover $\left(U_{\alpha}\right)$ of $B$ with transition maps : $\phi_{\alpha, \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ satisfying the cocycle condition.

## Property

We have $C^{\infty}(B) \simeq C_{G}^{\infty}(P)$

## Example

- A line bundle $L$ with zero section removed is a principal $\mathbb{C}^{*}$-bundle (e.g. $\mathcal{O}(-1) \backslash\{0\} \simeq \mathbb{C}^{2} \backslash\{0\}$ affine cone w.o. vertex over $B=\mathbb{P}^{1}$ ).
- The principal $\mathbb{S}^{1}$-bundle $\mathcal{U}(1)$ over $\mathbb{P}^{1}$, constructed from $\mathcal{O}(-1) \backslash\{0\}$, by the choice of a hermitian metrics on $\mathcal{O}(-1)$ (the Hopf fibration).


## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.

## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.
The projection map $\pi_{Y}: Y \rightarrow B$ is given by $\pi_{Y}([p, x])=\pi_{P}(p)$.

## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.
The projection map $\pi_{Y}: Y \rightarrow B$ is given by $\pi_{Y}([p, x])=\pi_{P}(p)$.

## Remark

- $Y$ is the base space of the principal bundle $X \times P \rightarrow Y$.


## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.
The projection map $\pi_{Y}: Y \rightarrow B$ is given by $\pi_{Y}([p, x])=\pi_{P}(p)$.

## Remark

- $Y$ is the base space of the principal bundle $X \times P \rightarrow Y$.
- $Y$ is a itself a fibration over $B$ of fiber $X$.


## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.
The projection map $\pi_{Y}: Y \rightarrow B$ is given by $\pi_{Y}([p, x])=\pi_{P}(p)$.

## Remark

- $Y$ is the base space of the principal bundle $X \times P \rightarrow Y$.
- $Y$ is a itself a fibration over $B$ of fiber $X$.


## Example

- Consider $\left(X, \omega, \mathbb{S}^{1}\right)=\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right)$ and $P=\mathcal{U}(1)$ the Hopf fibration over $\left.B=\mathbb{P}^{1}\right)$. The principal fibration

$$
Y:=\left(\mathcal{U}(1) \times \mathbb{P}^{1}\right) / \mathbb{S}^{1} \simeq \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-1)) \text { is a Hirzebruch-type surface. }
$$

## Principal fibration

## Definition

Let $P=P(B, G)$ be a principal bundle and $X$ a $G$-manifold. The quotient $Y=(P \times X) / G$ by the product action $g .(p, x) \rightarrow\left(p g, g^{-1} x\right)$, if exists, is called the principal fibration (or bundle) associated to $P$ with fiber $X$ and base $B$.
The projection map $\pi_{Y}: Y \rightarrow B$ is given by $\pi_{Y}([p, x])=\pi_{P}(p)$.

## Remark

- $Y$ is the base space of the principal bundle $X \times P \rightarrow Y$.
- $Y$ is a itself a fibration over $B$ of fiber $X$.


## Example

- Consider $\left(X, \omega, \mathbb{S}^{1}\right)=\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right)$ and $P=\mathcal{U}(1)$ the Hopf fibration over $\left.B=\mathbb{P}^{1}\right)$. The principal fibration $Y:=\left(\mathcal{U}(1) \times \mathbb{P}^{1}\right) / \mathbb{S}^{1} \simeq \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-1))$ is a Hirzebruch-type surface.
- Other Hirzeburch surfaces : $\left(\mathcal{U}(k) \times \mathbb{P}^{1}\right) / \mathbb{S}^{1} \simeq \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-k))$. Here $\mathcal{U}(k)$ is the circle bundle of $\mathcal{O}(-k)$.


## Connection on a Principal Bundle

Let $A_{*}(p)=(d / d t)_{t=0} p . e^{t A}$ be the vector field generated by $A \in \mathfrak{g}$.

## Connection on a Principal Bundle

Let $A_{*}(p)=(d / d t)_{t=0} p . e^{t A}$ be the vector field generated by $A \in \mathfrak{g}$. $A \rightarrow A_{*}(p)$ identifies $\mathfrak{g}$ with the vertical tangent space $G_{p} \simeq \operatorname{ker} d \pi_{p}$.

## Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset T P$ s.t. $H_{p} \oplus G_{p}=T_{p} P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^{1}(P, \mathfrak{g})$ s.t. $\theta\left(A_{*}\right)=A$ with $\operatorname{ker} \theta:=H$.

## Connection on a Principal Bundle

Let $A_{*}(p)=(d / d t)_{t=0} p . e^{t A}$ be the vector field generated by $A \in \mathfrak{g}$. $A \rightarrow A_{*}(p)$ identifies $\mathfrak{g}$ with the vertical tangent space $G_{p} \simeq \operatorname{ker} d \pi_{p}$.

## Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset T P$ s.t. $H_{p} \oplus G_{p}=T_{p} P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^{1}(P, \mathfrak{g})$ s.t. $\theta\left(A_{*}\right)=A$ with $\operatorname{ker} \theta:=H$.

## Connection on a Principal Bundle

Let $A_{*}(p)=(d / d t)_{t=0} p . e^{t A}$ be the vector field generated by $A \in \mathfrak{g}$. $A \rightarrow A_{*}(p)$ identifies $\mathfrak{g}$ with the vertical tangent space $G_{p} \simeq \operatorname{ker} d \pi_{p}$.

## Definition

A connection on P is the choice of a right invariant horizontal distribution $H \subset T P$ s.t. $H_{p} \oplus G_{p}=T_{p} P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^{1}(P, \mathfrak{g})$ s.t. $\theta\left(A_{*}\right)=A$ with $\operatorname{ker} \theta:=H$.

## Fact

Every principal bundle admits a connection.

## Connection on a Principal Bundle

Let $A_{*}(p)=(d / d t)_{t=0} p . e^{t A}$ be the vector field generated by $A \in \mathfrak{g}$. $A \rightarrow A_{*}(p)$ identifies $\mathfrak{g}$ with the vertical tangent space $G_{p} \simeq \operatorname{ker} d \pi_{p}$.

## Definition

A connection on $P$ is the choice of a right invariant horizontal distribution $H \subset T P$ s.t. $H_{p} \oplus G_{p}=T_{p} P$. Equivalently, it's the choice of an equivariant $\theta \in \Omega^{1}(P, \mathfrak{g})$ s.t. $\theta\left(A_{*}\right)=A$ with $\operatorname{ker} \theta:=H$.

## Fact

Every principal bundle admits a connection.
A connection $\theta$ on $P$ induces a connection $\theta$ on $X \times P$, hence a horizontal distribution on $X \times P$, identified $T Y, Y=(X \times P) / G$ :

$$
T Y \simeq T X \oplus T B
$$

## Semi-simple principal fibrations

## Definition

Given the data
$■\left(X, \omega, \mathbb{T}_{X}^{r}\right)$ compact Kähler $2 m$-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t} / 2 \pi \Lambda, \Lambda$ a lattice with basis $\left\{\xi_{i}, \ldots, \xi_{r}\right\}$.

## Semi-simple principal fibrations

## Definition

Given the data
■ $\left(X, \omega, \mathbb{T}_{X}^{r}\right)$ compact Kähler $2 m$-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t} / 2 \pi \Lambda, \Lambda$ a lattice with basis $\left\{\xi_{i}, \ldots, \xi_{r}\right\}$.

- Compact Hodge (i.e. projective) cscK manifold ( $B^{2 n}, \omega_{B}$ )


## Semi-simple principal fibrations

## Definition

Given the data
■ $\left(X, \omega, \mathbb{T}_{X}^{r}\right)$ compact Kähler $2 m$-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t} / 2 \pi \Lambda, \Lambda$ a lattice with basis $\left\{\xi_{i}, \ldots, \xi_{r}\right\}$.

- Compact Hodge (i.e. projective) cscK manifold ( $B^{2 n}, \omega_{B}$ )
- Principal $\mathbb{T}_{P}$-bundle $\pi: P \rightarrow B$ with connection 1-form $\theta$ with horizontal distribution $H \simeq T B$ and curvature $d \theta=\pi^{*} \omega_{B} \otimes p$, $p \in \Lambda$.


## Semi-simple principal fibrations

## Definition

Given the data

- $\left(X, \omega, \mathbb{T}_{X}^{r}\right)$ compact Kähler $2 m$-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t} / 2 \pi \Lambda, \Lambda$ a lattice with basis $\left\{\xi_{i}, \ldots, \xi_{r}\right\}$.
- Compact Hodge (i.e. projective) cscK manifold ( $B^{2 n}, \omega_{B}$ )
- Principal $\mathbb{T}_{P}$-bundle $\pi: P \rightarrow B$ with connection 1-form $\theta$ with horizontal distribution $H \simeq T B$ and curvature $d \theta=\pi^{*} \omega_{B} \otimes p$, $p \in \Lambda$.
we obtain the principal fibration $Y:=(X \times P) / \mathbb{T}_{X \times P}$ with a complex structure given by $\left(T Y, J_{Y}\right) \simeq\left(T X \oplus T B, J_{X} \oplus J_{B}\right)$ and $\theta=0$ on $T X \oplus T B$. Action on $X \times P: t(x, p):=\left(t x, p t^{-1}\right)$.


## Remark

- Can work with $B=B_{1} \times \cdots \times B_{k}$ ( $B_{i}$ Hodge cscK). But to simplify, $k=1$.


## Semi-simple principal fibrations

## Definition

Given the data

- $\left(X, \omega, \mathbb{T}_{X}^{r}\right)$ compact Kähler $2 m$-fold with isometric hamitonian action. $\mathbb{T} \simeq \mathfrak{t} / 2 \pi \Lambda, \Lambda$ a lattice with basis $\left\{\xi_{i}, \ldots, \xi_{r}\right\}$.
- Compact Hodge (i.e. projective) $\csc \mathrm{K}$ manifold $\left(B^{2 n}, \omega_{B}\right)$
- Principal $\mathbb{T}_{P}$-bundle $\pi: P \rightarrow B$ with connection 1-form $\theta$ with horizontal distribution $H \simeq T B$ and curvature $d \theta=\pi^{*} \omega_{B} \otimes p$, $p \in \Lambda$.
we obtain the principal fibration $Y:=(X \times P) / \mathbb{T}_{X \times P}$ with a complex structure given by $\left(T Y, J_{Y}\right) \simeq\left(T X \oplus T B, J_{X} \oplus J_{B}\right)$ and $\theta=0$ on $T X \oplus T B$. Action on $X \times P: t(x, p):=\left(t x, p t^{-1}\right)$.


## Remark

- Can work with $B=B_{1} \times \cdots \times B_{k}$ ( $B_{i}$ Hodge cscK). But to simplify, $k=1$.
- T-principal bundle over $B$ with curvature $d \theta \Longleftrightarrow$ Fiberwise product of $r$ principal $\mathbb{S}^{1}$-bundle $\mathcal{U}_{i}(1)$ associated to $r$ hermitian line bundles $L_{i}$ over $B$ with $2 \pi c_{1}\left(L_{i}\right)=p_{i} \pi^{*} \omega_{B}$, where $p=\sum_{i=1}^{r} p_{i} \xi_{i}$.


## Bundle compatible metrics

Example
$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant }}$ and vanish if one argument is vertical). Locally, a basic form depends only on horizontal coordinates.

## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant and vanish if one argument is vertical). Locally, a basic }}$ form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $T X \oplus T B$.

## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant and vanish if one argument is vertical). Locally, a basic }}$ form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $T X \oplus T B$.

## Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on $Y$ is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega}=\omega_{h}+\omega_{v}$ where

- $\omega_{h}:=\omega+\left(\left\langle p, \mu_{\omega}\right\rangle+c\right) \pi_{B}^{*} \omega_{B}$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\left\langle p, \mu_{\omega}\right\rangle+c>0$ on the moment polytope.


## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant and vanish if one argument is vertical). Locally, a basic }}$ form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $T X \oplus T B$.

## Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on $Y$ is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega}=\omega_{h}+\omega_{v}$ where

- $\omega_{h}:=\omega+\left(\left\langle p, \mu_{\omega}\right\rangle+c\right) \pi_{B}^{*} \omega_{B}$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\left\langle p, \mu_{\omega}\right\rangle+c>0$ on the moment polytope.
- $\omega_{v}:=\left\langle d \mu_{\omega} \wedge \theta\right\rangle$.


## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant and vanish if one argument is vertical). Locally, a basic }}$ form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $T X \oplus T B$.

## Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on $Y$ is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega}=\omega_{h}+\omega_{v}$ where

- $\omega_{h}:=\omega+\left(\left\langle p, \mu_{\omega}\right\rangle+c\right) \pi_{B}^{*} \omega_{B}$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\left\langle p, \mu_{\omega}\right\rangle+c>0$ on the moment polytope.
- $\omega_{v}:=\left\langle d \mu_{\omega} \wedge \theta\right\rangle$.

Equivalently :

$$
\widetilde{\omega}=\omega+c\left(\pi_{B}^{*} \omega_{B}\right)+d\left\langle\mu_{\omega}, \theta\right\rangle
$$

## Bundle compatible metrics

## Example

$\left(\mathbb{P}^{1}, \omega_{F S}, \mathbb{S}^{1}\right),\left(B, \omega_{B}\right)=\left(\mathbb{P}^{1}, \omega_{F S}\right)$ with principal bundle $\mathcal{U}(1)$, and $Y$ is the Hirzebruch complex surface $\mathbb{P}^{1}(\mathcal{O} \oplus \mathcal{O}(-1))$.

Basic forms on $X \times P:=$ pullback of forms on $Y(\Longleftrightarrow$ forms that are $\mathbb{T}_{X \times P \text {-invariant and vanish if one argument is vertical). Locally, a basic }}$ form depends only on horizontal coordinates. Recall : horizontal part of $T(X \times P)$ is $T X \oplus T B$.

## Bundle-compatible Kähler metric

A bundle-compatible Kähler metric on $Y$ is a basic 2-forms $\widetilde{\omega}$ on $X \times P$ given by: $\widetilde{\omega}=\omega_{h}+\omega_{v}$ where

- $\omega_{h}:=\omega+\left(\left\langle p, \mu_{\omega}\right\rangle+c\right) \pi_{B}^{*} \omega_{B}$ is the horizontal part. Here, $c \in \mathbb{R}$ is such that $\left\langle p, \mu_{\omega}\right\rangle+c>0$ on the moment polytope.
- $\omega_{v}:=\left\langle d \mu_{\omega} \wedge \theta\right\rangle$.

Equivalently :

$$
\widetilde{\omega}=\omega+c\left(\pi_{B}^{*} \omega_{B}\right)+d\left\langle\mu_{\omega}, \theta\right\rangle
$$

Positive definite + basic + closed $\Rightarrow \widetilde{\omega}$ descends to a Kähler form on $Y$.

## $C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$.

$C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$. Pulling back by $\pi_{Y}: X \times P \rightarrow Y$,

$$
C_{\mathbb{T}}^{\infty}(Y) \simeq C_{\mathbb{T}_{X}, \mathbb{T}_{P}}^{\infty}(X \times P) \simeq C_{\mathbb{T}_{X}}^{\infty}(X \times B)
$$

$C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$. Pulling back by $\pi_{Y}: X \times P \rightarrow Y$,

$$
C_{\mathbb{T}}^{\infty}(Y) \simeq C_{\mathbb{T}_{X}, \mathbb{T}_{P}}^{\infty}(X \times P) \simeq C_{\mathbb{T}_{X}}^{\infty}(X \times B)
$$

Moreover,

$$
C_{\mathbb{T}}^{\infty}(X) \simeq\left\{\psi \in C_{\mathbb{T}_{x}}^{\infty}(X \times B), d_{B} \psi_{\mid\{x\} \times B}=0, \forall x \in X\right\}
$$

so $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$.
$C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$. Pulling back by $\pi_{Y}: X \times P \rightarrow Y$,

$$
C_{\mathbb{T}}^{\infty}(Y) \simeq C_{\mathbb{T}_{X}, \mathbb{T}_{P}}^{\infty}(X \times P) \simeq C_{\mathbb{T}_{X}}^{\infty}(X \times B)
$$

Moreover,

$$
C_{\mathbb{T}}^{\infty}(X) \simeq\left\{\psi \in C_{\mathbb{T}_{X}}^{\infty}(X \times B), d_{B} \psi_{\mid\{x\} \times B}=0, \forall x \in X\right\}
$$

so $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$.
Embedding of potentials
The embedding $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$ induces a well-defined embedding of Kähler potentials $K_{\mathbb{T}}(X, \omega) \hookrightarrow K_{\mathbb{T}}(Y, \widetilde{\omega})$ In other words, if $\omega_{\phi}=\omega+d_{X} d_{X}^{c} \phi$ then $\widetilde{\omega}_{\phi}=\widetilde{\omega}+d_{Y} d_{Y}^{c} \phi$, i.e. the map $[\omega] \rightarrow[\widetilde{\omega}]$ is well-defined.
$C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$. Pulling back by $\pi_{Y}: X \times P \rightarrow Y$,

$$
C_{\mathbb{T}}^{\infty}(Y) \simeq C_{\mathbb{T}_{X}, \mathbb{T}_{P}}^{\infty}(X \times P) \simeq C_{\mathbb{T}_{X}}^{\infty}(X \times B)
$$

Moreover,

$$
C_{\mathbb{T}}^{\infty}(X) \simeq\left\{\psi \in C_{\mathbb{T}_{X}}^{\infty}(X \times B), d_{B} \psi_{\mid\{x\} \times B}=0, \forall x \in X\right\}
$$

so $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$.

## Embedding of potentials

The embedding $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$ induces a well-defined embedding of Kähler potentials $K_{\mathbb{T}}(X, \omega) \hookrightarrow K_{\mathbb{T}}(Y, \widetilde{\omega})$ In other words, if $\omega_{\phi}=\omega+d_{X} d_{X}^{c} \phi$ then $\widetilde{\omega}_{\phi}=\widetilde{\omega}+d_{Y} d_{Y}^{c} \phi$, i.e. the map $[\omega] \rightarrow[\widetilde{\omega}]$ is well-defined.
Sketch of proof: Let $\mu_{\phi}$ be the moment map of $\omega_{\phi}$. By the equality :

$$
\mu_{\phi}=\mu+d_{X}^{c} \phi
$$

we see that $\widetilde{\omega}_{\phi}=\widetilde{\omega}+d_{Y} d_{Y}^{c} \phi$ is equivalent to

$$
d_{Y}^{c} \phi=d_{X}^{c} \phi+\left\langle d_{X}^{c} \phi, \theta\right\rangle
$$

$C_{\mathbb{T}}^{\infty}(X), C_{\mathbb{T}}^{\infty}(Y):=$ smooth $\mathbb{T}$-invariant functions on $X$ and $Y$. Pulling back by $\pi_{Y}: X \times P \rightarrow Y$,

$$
C_{\mathbb{T}}^{\infty}(Y) \simeq C_{\mathbb{T}_{X}, \mathbb{T}_{P}}^{\infty}(X \times P) \simeq C_{\mathbb{T}_{X}}^{\infty}(X \times B)
$$

Moreover,

$$
C_{\mathbb{T}}^{\infty}(X) \simeq\left\{\psi \in C_{\mathbb{T}_{X}}^{\infty}(X \times B), d_{B} \psi_{\mid\{x\} \times B}=0, \forall x \in X\right\}
$$

so $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$.

## Embedding of potentials

The embedding $C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y)$ induces a well-defined embedding of Kähler potentials $K_{\mathbb{T}}(X, \omega) \hookrightarrow K_{\mathbb{T}}(Y, \widetilde{\omega})$ In other words, if $\omega_{\phi}=\omega+d_{X} d_{X}^{c} \phi$ then $\widetilde{\omega}_{\phi}=\widetilde{\omega}+d_{Y} d_{Y}^{c} \phi$, i.e. the map $[\omega] \rightarrow[\widetilde{\omega}]$ is well-defined.
Sketch of proof: Let $\mu_{\phi}$ be the moment map of $\omega_{\phi}$. By the equality :

$$
\mu_{\phi}=\mu+d_{X}^{c} \phi
$$

we see that $\widetilde{\omega}_{\phi}=\widetilde{\omega}+d_{Y} d_{Y}^{c} \phi$ is equivalent to

$$
d_{Y}^{c} \phi=d_{X}^{c} \phi+\left\langle d_{X}^{c} \phi, \theta\right\rangle
$$

Both sides vanish on vertical vectors ( vectors generated by local generator of $\mathfrak{t}_{X, P}$ ) and equal on horizontal vectors

## An integration formula

By compatibility, on the horizontal part of $X \times P$ :

$$
\widetilde{\omega}_{\phi}=\omega_{\phi}+\left(\left\langle p, \mu_{\omega_{\phi}}\right\rangle+c\right) \pi_{B}^{*} \omega_{B}
$$

## An integration formula

By compatibility, on the horizontal part of $X \times P$ :

$$
\begin{gathered}
\widetilde{\omega}_{\phi}=\omega_{\phi}+\left(\left\langle p, \mu_{\omega_{\phi}}\right\rangle+c\right) \pi_{B}^{*} \omega_{B} \\
\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}}=\operatorname{det}\left(\begin{array}{cc}
\text { Id } & 0 \\
0 & \left\langle p, \mu_{\phi}\right\rangle+c
\end{array}\right)=\left\langle p, \mu_{\phi}\right\rangle+c
\end{gathered}
$$

## An integration formula

By compatibility, on the horizontal part of $X \times P$ :

$$
\begin{gathered}
\widetilde{\omega}_{\phi}=\omega_{\phi}+\left(\left\langle p, \mu_{\omega_{\phi}}\right\rangle+c\right) \pi_{B}^{*} \omega_{B} \\
\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}}=\operatorname{det}\left(\begin{array}{cc}
\text { Id } & 0 \\
0 & \left\langle p, \mu_{\phi}\right\rangle+c
\end{array}\right)=\left\langle p, \mu_{\phi}\right\rangle+c
\end{gathered}
$$

If $B=B_{1} \times \cdots \times B_{k}$, then $p=\prod_{i=1}^{k}\left(\left\langle p_{i}, \mu_{\phi}\right\rangle+c_{i}\right)$.

## An integration formula

By compatibility, on the horizontal part of $X \times P$ :

$$
\begin{gathered}
\widetilde{\omega}_{\phi}=\omega_{\phi}+\left(\left\langle p, \mu_{\omega_{\phi}}\right\rangle+c\right) \pi_{B}^{*} \omega_{B} \\
\Rightarrow \frac{\widetilde{\omega}_{\phi}^{[n+b]}}{\omega_{\phi}^{[n]} \wedge \omega_{B}^{[b]}}=\operatorname{det}\left(\begin{array}{cc}
\text { Id } & 0 \\
0 & \left\langle p, \mu_{\phi}\right\rangle+c
\end{array}\right)=\left\langle p, \mu_{\phi}\right\rangle+c
\end{gathered}
$$

If $B=B_{1} \times \cdots \times B_{k}$, then $p=\prod_{i=1}^{k}\left(\left\langle p_{i}, \mu_{\phi}\right\rangle+c_{i}\right)$. Hence for all $f \in C_{\mathbb{T}}^{\infty}(X) \hookrightarrow C_{\mathbb{T}}^{\infty}(Y):$

$$
\int_{Y} f \widetilde{\omega}_{\phi}^{[n+b]}=\operatorname{vol}\left(B, \omega_{B}\right) \int_{X} p\left(\mu_{\phi}\right) f \omega_{\phi}^{[n]}
$$

Allows construction of the weighted Monge-Ampère measure !

