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¢ € Kr(X,wo), we write py for the moment map associated to

we 1= w + dd“¢®, normalized so that its image is A. The di-completion of Kr
is the space

4 (X,n) = { € PSHa(X.w0). [ lol(we)" <0 |

Today, we will look into the extension of M, , to the space £3(X,wo).
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Precise statement:

The Chen-Tian formula gives the largest di-Isc extension of M, . on E3(X,wo).
Furthermore, this extended M, , is linear in v, w, uniformly continuous in w
wrt C°(A) and continuous in v wrt C*(A)
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By Lahdili, one has a Chen-Tian-like decomposition of M, » on Kr:
V(i) . R m
Men() = [ tog (9 ) )l 10211 (0) - [ topv(uo) (o)l
X 0 X

1. Extend the entropy term. Main idea: in the case of polynomial v, extension
of the weighted entropy on X corresponds to extension of the unweighted
entropy on an associated fibration.

2. I, term: need estimates relating d; and the weighted distance di,w.

3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

The Chen-Tian formula gives the largest di-Isc extension of M, . on E3(X,wo).
Furthermore, this extended M, , is linear in v, w, uniformly continuous in w
wrt C°(A) and continuous in v wrt C*(A), and is convex along weak Mabuchi
geodesics.
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Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampeére operator
¢ — MA(9)

extends to £1(X, wo).
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Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampeére operator
¢ — MA(9)

extends to E'(X, wp). The entropy is extended to £ in a measure-theoretic

sense:
(], lml g\
Ent(wy s wg ):/Xlog Il Wy
W

(where —% is understood as a Radon-Nikodym derivative).
0

In the weighted case, we need to understand the operator
MA(@) 1= v(po)w”

on &F in order to define our entropy term Ent(w([)m]7 MA.(¢)).
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Proposition (AJL '21, Han-Li '20)

The operator ¢ — MA,(¢) extends to a Radon measure-valued operator on
&L, which is continuous along pointwise decreasing sequences in L (wrt the
weak topology of measures).
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The operator ¢ — MA,(¢) extends to a Radon measure-valued operator on
&L, which is continuous along pointwise decreasing sequences in L (wrt the
weak topology of measures).

First step: the case of polynomial v. We assume that v > 0 is of the form

k

v(p) = [T (e i) + ).

a=1

We construct an associated semisimple principal fibration (Y, @g), which will
allow us to compute fx f MA,(¢) for torus-invariant continuous functions f on
X (as in Tran-Trung's talk).Namely, from Simon's talk, we will have that

Y X

with vg the volume of the base of the fibration.
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Recall that v(u) = H’;:l((Va,/,L) + ).

Define the base of the fibration as B = By X --- X Bk where B, = (P™,w,),
with Fubini-Study metrics of scalar curvature = 2n,(n, + 1).
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with Fubini-Study metrics of scalar curvature = 2n,(n, + 1). We pick
mg : P — B a principal T-bundle with a connection 6 whose curvature is
K
do = Z(ﬂ'Ewa) R Vs.
a=1
We then set Y = (X x P)/(Txxp), and define
K
o := wo + Z((va,mg) + Ca)TEwWa + (d iy A 6).
a=1
It is a 2-form on X x P which descends to a Ty-invariant Kahler form &y on Y
(Tran-Trung's talk again).
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We have a well-defined embedding v of the set of wo-integrable T-invariant
functions on X into the set of &o-integrable Ty-invariant functions on Y,
sending smooth functions to smooth functions;
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We then set Y = (X x P)/(Txxp), and define
K
o := wo + Z((va,/mg) + Ca)TEwWa + (d iy A 6).
a=1
It is a 2-form on X x P which descends to a Ty-invariant Kahler form &y on Y
(Tran-Trung's talk again).

Theorem

We have a well-defined embedding v of the set of wo-integrable T-invariant
functions on X into the set of &o-integrable Ty-invariant functions on Y,
sending smooth functions to smooth functions; it induces an embedding

’C']r(X,(.do) — ’CT(Y,(;)o), We —r ‘:)b(¢)

such that the form induced by wg on Y coincides with &,(4y. (In particular,
di-isometry.)

V.
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We have the following integration formula:

/ Fiplmil / o(F) vijag) w7
Y X

with vg := vol(B, wg).
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We have the following integration formula:

/ fa)([;ﬁn] _ VB_I/ o) V(M(ﬁ)wgﬂ]
y X

with vg := vol(B, wg).

Now, pick ¢ € £(X,wo), and approximate it by a decreasing sequence (¢;); in
Kr(X,wo). Each ¢; also defines a metric in Kr(Y, &), so that by the
integration formula, for each f € CJ(X),

/ f&)g)';”r"] =vg! / v(u¢j)fw5:]
14 X
We thus define
/ f MA, () := lim / F b,
X Jj=oe )y /

For general f € C°(X), we define fT to be the T-invariant function defined by
the average of f over torus orbits, and set

/XfMAv(qb) :=/XfTMAV(¢).

Because f — fT is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.
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The case of non-polynomial v. We first extend the previous definition by
linearity on the cone generated by positive linear combinations of polynomials
of the above form. Because such polynomials are bounded on A one always has

/fMA () — /fMAVq ’<||vp Vellcoca /|f|MA %)

for two such v,, vq.
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The case of non-polynomial v. We first extend the previous definition by
linearity on the cone generated by positive linear combinations of polynomials
of the above form. Because such polynomials are bounded on A one always has

/fMA () — /fMAVq ’<||vp Vellcoca /|f\MA %)

for two such v, vq. This cone is dense in CS3(A), so that, given an arbitrary
v € C$H(A), which we approximate by a sequence (vk )« of positive
polynomials, we define

/XfMA () = Jim /XfMA”*(¢)'

k— o0

This again defines a positive Radon measure, and concludes the proof of the
extension of MA, (+ a C’-estimate).
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Lemma (continuity of MA,)

If (¢5); is a sequence in € such that di(g;, ¢) — O for some ¢ € &7, then
MA,(¢;) = MA,(¢) weakly.
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construct a fibration Y as before. Note that even if the ¢; are in £F, we can
approximate with smooth (¢; )« so that for f € C2(X) we have

/XfMAV(@-):liLn/XfMAv(qu,k): v,;llizn/nyA(@,k): vB_l/nyA(qu).

Because di(¢j, ¢) — 0, due to the embedding Theorem the same holds on Y.

Therefore,
MAY(¢;) = MAY(¢).
Thus

im [ FMA) = vsim | FMA)
J Jx J Y

vgl/nyA(gb)
:/XfMAV(qﬁ).

This holds for non-torus-invariant f by considering T as before.
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For an arbitrary positive weight v, we approximate it by polynomials (v;); of
the above type in the C°(A)-topology.
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For an arbitrary positive weight v, we approximate it by polynomials (v;); of
the above type in the C°(A)-topology. For f € C°(X) we have

‘/XfMAv(tﬁj)f/XfMAv(@’
< /XfMAV(@)—/XfMAV,(@)
+’/XfMAV,.(¢)—/XfMAv(¢)‘
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For an arbitrary positive weight v, we approximate it by polynomials (v;); of
the above type in the C°(A)-topology. For f € C°(X) we have

[ rvae - [ fMAv(¢)]

<|[ Faade) - [ iage)
—s—‘/XfMAV,.(qb)—/XfMAV(@)‘
<|[ - [ fMAV,-(¢>)]+|\vf—v||co(A) ([ 1710mae + paco) .

We take the limit in j, so that

[ rvaan - [ fMAv(qa)\ < 20— o ( [ 1F1MA))

by continuity of the unweighted MA.
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J
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For an arbitrary positive weight v, we approximate it by polynomials (v;); of
the above type in the C°(A)-topology. For f € C°(X) we have

[ rvae - [ fMAvw)'

<|[ Faade) - [ iage)
+'/XfMAV,(¢)—/XfMAV(¢)‘
<|[ - [ fMAV,-(cz>)]+|\vf—v||co(A) ([ 1710mae + paco) .

We take the limit in j, so that

[ - [ fMAv(qa)\ < 2)vi = vl cogay ( / |f\MA(¢>)

by continuity of the unweighted MA. Then this limit is shown to be zero by

taking i — oo, which implies that MA,(¢;) —; MA,(¢). This concludes the
proof of the Lemma.

+‘/XfMAV,-(¢j)—/XfMAw(¢)‘

lim
J
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and in entropy to ¢.

Lower-semicontinuity: as a more general statement, if y is a finite measure,
then v — Ent(u, v) is Isc on the space of finite measures absolutely cts with
respect to p (wrt weak topology). One can indeed see that

Ent(p,v) = sup (/ fdv— Iog/ ef d,u) .
feco(x) \Jx X

Because for fixed f, v — fx f dv is continuous, the entropy is thus a
supremum of a family of continuous functions, i.e. Isc. Now, by the previous
Lemma, MA, is di-continuous, so that the entropy is di-Isc.
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Entropy approximation (sketch of proof): pick ¢ € £}, and set
g = MA(9)/wf”.
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Entropy approximation (sketch of proof): pick ¢ € £}, and set
g = MAV(d))/w([)m]. By [BDL], we can L'-approximate g via positive functions
gi € Cp°(X) such that

/ g Ioggjw([)m] —j o0 Ent(w([)m], MA, (¢)).
X

We then solve the weighted MA equation (Han-Li):

Sy v(0)wh m
Av(dy) = < X [m$ gjwél :
fx &j Wo

yielding a solution ¢; € CF°(X). Because the sublevel sets of the weighted
entropy are di-compact (Han-Li again), up to a subsequence the ¢;
dy-converge to some 1) € £}, Thus, by the previous Lemma

MAL (#) = lim MA,(6)).

On the other hand, by the MA, equation above and L'-convergence of gj to g
we have that

Av(¢) = lim MAY(4))-
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Entropy approximation (sketch of proof): pick ¢ € £}, and set
g = MAV(d))/w([)m]. By [BDL], we can L'-approximate g via positive functions
gi € Cp°(X) such that

/ g Ioggjw([)m] —j o0 Ent(w([)m], MA, (¢)).
X

We then solve the weighted MA equation (Han-Li):

Av(¢)) = <fx po)ey” gjw([)m]> ,

fx &jw ([]m]

yielding a solution ¢; € CF°(X). Because the sublevel sets of the weighted
entropy are di-compact (Han-Li again), up to a subsequence the ¢;
dy-converge to some 1) € £}, Thus, by the previous Lemma

MA, (¢) = lim MA,(¢;).
J
On the other hand, by the MA, equation above and L'-convergence of gj to g

we have that

MA.(6) = lim MAL(6))

Thus u = ¢ + ¢ for some constant, so that up to substracting constants u; is
the desired sequence.
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The I, functional and the weighted d;-distance.

We define the weighted length of a smooth curve t — ¢+ € Kr: for
v € C®(A)so,

altod) = [ ([ 18:m0a) Ma(0) o
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The I, functional and the weighted d;-distance.

We define the weighted length of a smooth curve t — ¢+ € Kr: for
v € C®(A)so,

altod) = [ ([ 18:m0a) Ma(0) o

We then set
diy(do, ¢1) = inf L1, ({¢e}e)
t— ot

among all smooth curves joining ¢o and ¢1 in Kr. It is a distance, and in fact
equivalent to the di-distance:

If v > 0 there exists C > 0 such that for all ¢o, $1 € Kr:

C_1d1(¢o,¢1) < di,v(¢0, P1) < C di(o, ¢1)-

(This is due to the fact that v is bounded on A.)
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It is closely related to the /, functional defined by its variation:

(doh)(3) = / v (116) MA(9).
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It is closely related to the I, functional defined by its variation:

(doh)(d) = / v (116) MA(9).

It follows that I, is di,,-Lipschitz: given a curve ¢; joining ¢o, ¢1 in Kr, one has

(o) — ()] = ] JRCAB(CS

1
</ (/
0 X

so that in particular

[l (d0) — (1) <inflyy({@e}e) = ch,u(do, P1).

By the previous Lemma, this is smaller than a constant times di(¢o, ¢1), hence
I, is di-Lipschitz. This allows us to extend it to £%. Note that /, is by
definition linear in v, which furthermore allows us to extend it by linearity to
nonpositive weights.
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A few words on /7.

Let p be an invariant closed (1,1)-form. We again define I by its variation

(@l )(0) = [ ulualo il ™+ () ). o))
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One has the following:

Proposition

12 extends to a dj-continuous functional on £F, which is bounded on bounded
subsets; furthermore this extension is linear and continuous in v (wrt C1(A)).
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A few words on /7.

Let p be an invariant closed (1,1)-form. We again define I by its variation
(d:1)(@) = /Xq'S(v(W,)p AWl ((dv) (1s), p)™).

One has the following:

Proposition

12 extends to a dj-continuous functional on £F, which is bounded on bounded
subsets; furthermore this extension is linear and continuous in v (wrt C1(A)).

The proof relies on somewhat tedious computation, based on [BDL]. The key is
to obtain an explicit expression for I7(¢1) — 12(¢0) (which brings us to the next

page...)
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17 (¢1) = 17 (o)
m—1

=/X(¢1—¢o)(_

J

+ [ (6= en) <m 1 ([ a9 amtsm + 1~ s Yl 1 wé"“-fl) |

Jj=0

1 . .
[ [ oa—sm vt + (1 s)uo)ds] p Al A w([)m_J_ll>
0
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17 (¢1) — I (o)

/(Cbl ( {/ S(1—8)"""u(spr + (1 — s)uo)ds } p/\w[’] /\w['" —j= 1])
+ /X(¢1 — ¢o) <Z </0 (1= )" (dv)(spa + (1 — s)po)ds, Mp> U Aw[m—ﬂ) |

For example, for the C'-estimate, one uses linearity: 17(¢) — 12(¢) = I7_,,(¢).
Then, this formula for ¢1 = ¢, ¢o = 0 allows us to have an estimate of the form

(@) < Cllv = wlawy | Ikl nd™
< C’||V— W||C1(A)/X|¢|w5>m]7

as desired.
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Conclusion

e We have extended all components of the Chen-Tian formula to £F, which
gives a di-Isc extension of M, , to that space.
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e We have to show that it is the largest such extension. By the entropy
approximation Lemma, given ¢ € £, one can find a sequence (¢;); in Kr
conveging in di and in weighted entropy to ¢. On the other hand, /, and I/
are d;-continuous, so that

Mv,w(¢j) _>ij Mv,w(¢)

and the desired statement follows.
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e Regarding linearity in v, w: since all the other components are linear, we need
only look at the entropy. In fact we will need the additional " constant” term:
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which is linear, as desired!
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e We have extended all components of the Chen-Tian formula to £F, which
gives a di-Isc extension of M, , to that space.

e We have to show that it is the largest such extension. By the entropy
approximation Lemma, given ¢ € £, one can find a sequence (¢;); in Kr
conveging in di and in weighted entropy to ¢. On the other hand, /, and I/
are d;-continuous, so that

Mv,w(¢j) _>ij Mv,w(¢)

and the desired statement follows.

e Regarding linearity in v, w: since all the other components are linear, we need
only look at the entropy. In fact we will need the additional " constant” term:

Ent(w™, MA,(4)) — / log(v(110))v(po0)wh™ = / log ( MA(¢)/wg’) MA,(¢),
X X
which is linear, as desired!

e Regarding geodesics: Lahdili proved that M, . is convex along Mabuchi
geodesics in Kr (closely following Berman-Berndtsson). The general result
then follows from entropy approximation.

Fin.
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