
Weighted cscK working group Apr. 15 2022.

Setup: X compact Kähler manifold, dimR X = 2m. T ⊂ Autred(X ) compact
torus, ω0 T-invariant Kähler metric.
∆ is the image of the moment map µ0 : X → t∗ associated to ω0.
We consider weights v > 0, w in C∞(∆).

KT(X , ω0) denotes the space of T-invariant Kähler potentials. Given
φ ∈ KT(X , ω0), we write µφ for the moment map associated to
ωφ := ω + dd cφ, normalized so that its image is ∆. The d1-completion of KT
is the space

E1
T(X , ω0) :=

{
φ ∈ PSHT(X , ω0),

∫
X

|φ|(ωφ)m <∞
}
.

Today, we will look into the extension of Mv,w to the space E1
T(X , ω0).
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By Lahdili, one has a Chen-Tian-like decomposition of Mv,w on KT:

Mv,w (φ) =

∫
X

log

(
v(µφ)ωm

φ

ωm
0

)
v(µφ)ω

[m]
φ

+Iω(φ)−2I
Ricω0
v (φ)−

∫
X

log(v(µ0))v(µ0)ω
[m]
0 .

1. Extend the entropy term. Main idea: in the case of polynomial v , extension
of the weighted entropy on X corresponds to extension of the unweighted
entropy on an associated fibration.
2. Iw term: need estimates relating d1 and the weighted distance d1,w .
3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

Theorem

The Chen-Tian formula gives the largest d1-lsc extension of Mv,w on E1
T(X , ω0).

Furthermore, this extended Mv,w is linear in v, w, uniformly continuous in w
wrt C 0(∆) and continuous in v wrt C 1(∆), and is convex along weak Mabuchi
geodesics.
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Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampère operator

φ 7→ MA(φ)

extends to E1(X , ω0).

The entropy is extended to E1 in a measure-theoretic
sense:

Ent(ω
[m]
0 , ω

[m]
φ ) =

∫
X

log

(
ω

[m]
φ

ω
[m]
0

)
ω

[m]
φ

(where
ωm
φ

ωm
0

is understood as a Radon-Nikodym derivative).

In the weighted case, we need to understand the operator

MAv (φ) := v(µφ)ω
[m]
φ

on E1
T in order to define our entropy term Ent(ω

[m]
0 , MAv (φ)).
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Proposition (AJL ’21, Han-Li ’20)

The operator φ 7→ MAv (φ) extends to a Radon measure-valued operator on
E1
T, which is continuous along pointwise decreasing sequences in E1

T (wrt the
weak topology of measures).

First step: the case of polynomial v . We assume that v > 0 is of the form

v(µ) =
k∏

a=1

(〈va, µ〉+ ca)na .

We construct an associated semisimple principal fibration (Y , ω̃φ), which will
allow us to compute

∫
X

f MAv (φ) for torus-invariant continuous functions f on
X (as in Tran-Trung’s talk).Namely, from Simon’s talk, we will have that∫

Y

f ω̃
[m+n]
φ = v−1

B

∫
X

f v(µφ)ω
[m]
φ

with vB the volume of the base of the fibration.
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Recall that v(µ) =
∏k

a=1(〈va, µ〉+ ca)na .

Define the base of the fibration as B = B1 × · · · × Bk where Ba = (Pna , ωa),
with Fubini-Study metrics of scalar curvature = 2na(na + 1).

We pick
πB : P → B a principal T-bundle with a connection θ whose curvature is

dθ =
k∑

a=1

(π∗Bωa)⊗ va.

We then set Y = (X × P)/(TX×P), and define

ω̃0 := ω0 +
k∑

a=1

(〈va, µω0〉+ ca)π∗Bωa + 〈dµω0 ∧ θ〉.

It is a 2-form on X × P which descends to a TY -invariant Kähler form ω̃0 on Y
(Tran-Trung’s talk again).

Theorem

We have a well-defined embedding ι of the set of ω0-integrable T-invariant
functions on X into the set of ω̃0-integrable TY -invariant functions on Y ,
sending smooth functions to smooth functions; it induces an embedding

KT(X , ω0) ↪→ KT(Y , ω̃0), ωφ 7→ ω̃ι(φ)

such that the form induced by ωφ on Y coincides with ω̃ι(φ). (In particular,
d1-isometry.)
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Theorem

We have the following integration formula:∫
Y

f ω̃
[m+n]
φ = v−1

B

∫
X

ι(f ) v(µφ)ω
[m]
φ

with vB := vol(B, ωB).

Now, pick φ ∈ E1
T(X , ω0), and approximate it by a decreasing sequence (φj)j in

KT(X , ω0). Each φj also defines a metric in KT(Y , ω̃0), so that by the
integration formula, for each f ∈ C 0

T(X ),∫
Y

f ω̃
[m+n]
φj

= v−1
B ·

∫
X

v(µφj )f ω
[m]
φj

We thus define ∫
X

f MAv (φ) := lim
j→∞

∫
Y

f ω̃
[m+n]
φj

.

For general f ∈ C 0(X ), we define f T to be the T-invariant function defined by
the average of f over torus orbits, and set∫

X

f MAv (φ) :=

∫
X

f T MAv (φ).

Because f 7→ f T is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.

6 / 16



Theorem

We have the following integration formula:∫
Y

f ω̃
[m+n]
φ = v−1

B

∫
X

ι(f ) v(µφ)ω
[m]
φ

with vB := vol(B, ωB).

Now, pick φ ∈ E1
T(X , ω0), and approximate it by a decreasing sequence (φj)j in

KT(X , ω0).

Each φj also defines a metric in KT(Y , ω̃0), so that by the
integration formula, for each f ∈ C 0

T(X ),∫
Y

f ω̃
[m+n]
φj

= v−1
B ·

∫
X

v(µφj )f ω
[m]
φj

We thus define ∫
X

f MAv (φ) := lim
j→∞

∫
Y

f ω̃
[m+n]
φj

.

For general f ∈ C 0(X ), we define f T to be the T-invariant function defined by
the average of f over torus orbits, and set∫

X

f MAv (φ) :=

∫
X

f T MAv (φ).

Because f 7→ f T is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.

6 / 16



Theorem

We have the following integration formula:∫
Y

f ω̃
[m+n]
φ = v−1

B

∫
X

ι(f ) v(µφ)ω
[m]
φ

with vB := vol(B, ωB).

Now, pick φ ∈ E1
T(X , ω0), and approximate it by a decreasing sequence (φj)j in

KT(X , ω0). Each φj also defines a metric in KT(Y , ω̃0), so that by the
integration formula, for each f ∈ C 0

T(X ),∫
Y

f ω̃
[m+n]
φj

= v−1
B ·

∫
X

v(µφj )f ω
[m]
φj

We thus define ∫
X

f MAv (φ) := lim
j→∞

∫
Y

f ω̃
[m+n]
φj

.

For general f ∈ C 0(X ), we define f T to be the T-invariant function defined by
the average of f over torus orbits, and set∫

X

f MAv (φ) :=

∫
X

f T MAv (φ).

Because f 7→ f T is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.

6 / 16



Theorem

We have the following integration formula:∫
Y

f ω̃
[m+n]
φ = v−1

B

∫
X

ι(f ) v(µφ)ω
[m]
φ

with vB := vol(B, ωB).

Now, pick φ ∈ E1
T(X , ω0), and approximate it by a decreasing sequence (φj)j in

KT(X , ω0). Each φj also defines a metric in KT(Y , ω̃0), so that by the
integration formula, for each f ∈ C 0

T(X ),∫
Y

f ω̃
[m+n]
φj

= v−1
B ·

∫
X

v(µφj )f ω
[m]
φj

We thus define ∫
X

f MAv (φ) := lim
j→∞

∫
Y

f ω̃
[m+n]
φj

.

For general f ∈ C 0(X ), we define f T to be the T-invariant function defined by
the average of f over torus orbits, and set∫

X

f MAv (φ) :=

∫
X

f T MAv (φ).

Because f 7→ f T is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.

6 / 16



Theorem

We have the following integration formula:∫
Y

f ω̃
[m+n]
φ = v−1

B

∫
X

ι(f ) v(µφ)ω
[m]
φ

with vB := vol(B, ωB).

Now, pick φ ∈ E1
T(X , ω0), and approximate it by a decreasing sequence (φj)j in

KT(X , ω0). Each φj also defines a metric in KT(Y , ω̃0), so that by the
integration formula, for each f ∈ C 0

T(X ),∫
Y

f ω̃
[m+n]
φj

= v−1
B ·

∫
X

v(µφj )f ω
[m]
φj

We thus define ∫
X

f MAv (φ) := lim
j→∞

∫
Y

f ω̃
[m+n]
φj

.

For general f ∈ C 0(X ), we define f T to be the T-invariant function defined by
the average of f over torus orbits, and set∫

X

f MAv (φ) :=

∫
X

f T MAv (φ).

Because f 7→ f T is linear, this defines a positive Radon measure by
Riesz-Markov-Kakutani.

6 / 16



The case of non-polynomial v . We first extend the previous definition by
linearity on the cone generated by positive linear combinations of polynomials
of the above form. Because such polynomials are bounded on ∆ one always has∣∣∣∣∫

X

f MAvp (φ)−
∫
X

f MAvq (φ)

∣∣∣∣ ≤ ‖vp − vq‖C0(∆)

∫
X

|f |MA(φ)

for two such vp, vq.

This cone is dense in C∞>0(∆), so that, given an arbitrary
v ∈ C∞>0(∆), which we approximate by a sequence (vk)k of positive
polynomials, we define∫

X

f MAv (φ) := lim
k→∞

∫
X

f MAvk (φ).

This again defines a positive Radon measure, and concludes the proof of the
extension of MAv (+ a C 0-estimate).
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Lemma (continuity of MAv )

If (φj)j is a sequence in E1
T such that d1(φj , φ)→ 0 for some φ ∈ E1

T, then
MAv (φj)→ MAv (φ) weakly.

We again begin with the polynomial case: v(µ) =
∏k

a=1(〈va, µ〉+ ca)na and
construct a fibration Y as before. Note that even if the φj are in E1

T, we can
approximate with smooth (φj,k)k so that for f ∈ C 0

T(X ) we have∫
X

f MAv (φj) = lim
k

∫
X

f MAv (φj,k) = v−1
B lim

k

∫
Y

f MA(φj,k) = v−1
B

∫
Y

f MA(φj).

Because d1(φj , φ)→ 0, due to the embedding Theorem the same holds on Y .
Therefore,

MAY (φj)→j MAY (φ).

Thus

lim
j

∫
X

f MAv (φj) = v−1
B lim

j

∫
Y

f MA(φj)

= v−1
B

∫
Y

f MA(φ)

=

∫
X

f MAv (φ).

This holds for non-torus-invariant f by considering f T as before.
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For an arbitrary positive weight v , we approximate it by polynomials (vi )i of
the above type in the C 0(∆)-topology.

For f ∈ C 0(X ) we have∣∣∣∣∫
X

f MAv (φj)−
∫
X

f MAv (φ)

∣∣∣∣
≤
∣∣∣∣∫

X

f MAv (φj)−
∫
X

f MAvi (φj)

∣∣∣∣+

∣∣∣∣∫
X

f MAvi (φj)−
∫
X

f MAvi (φ)

∣∣∣∣
+

∣∣∣∣∫
X

f MAvi (φ)−
∫
X

f MAv (φ)

∣∣∣∣
≤
∣∣∣∣∫

X

f MAvi (φj)−
∫
X

f MAvi (φ)

∣∣∣∣+ ‖vi − v‖C0(∆)

(∫
X

|f |(MA(φj) + MA(φ))

)
.

We take the limit in j , so that

lim
j

∣∣∣∣∫
X

f MAv (φj)−
∫
X

f MAv (φ)

∣∣∣∣ ≤ 2‖vi − v‖C0(∆)

(∫
X

|f |MA(φ)

)
by continuity of the unweighted MA. Then this limit is shown to be zero by
taking i →∞, which implies that MAv (φj)→j MAv (φ). This concludes the
proof of the Lemma.
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Lemma (entropy approximation)

• The mapping φ 7→ Ent(ω
[m]
0 , MAv (φ)) is d1-lsc.

• Given any φ ∈ E1
T, there exists a sequence φj ∈ KT converging in d1-distance

and in entropy to φ.

Lower-semicontinuity: as a more general statement, if µ is a finite measure,
then ν 7→ Ent(µ, ν) is lsc on the space of finite measures absolutely cts with
respect to µ (wrt weak topology). One can indeed see that

Ent(µ, ν) = sup
f∈C0(X )

(∫
X

f dν − log

∫
X

e f dµ

)
.

Because for fixed f , ν 7→
∫
X

f dν is continuous, the entropy is thus a
supremum of a family of continuous functions, i.e. lsc. Now, by the previous
Lemma, MAv is d1-continuous, so that the entropy is d1-lsc.
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Entropy approximation (sketch of proof): pick φ ∈ E1
T, and set

g := MAv (φ)/ω
[m]
0 .

By [BDL], we can L1-approximate g via positive functions
gj ∈ C∞T (X ) such that∫

X

gj log gj ω
[m]
0 →j→∞ Ent(ω

[m]
0 , MAv (φ)).

We then solve the weighted MA equation (Han-Li):

MAv (φj) =

(∫
X

v(µ0)ω
[m]
0∫

X
gjω

[m]
0

gjω
[m]
0

)
,

yielding a solution φj ∈ C∞T (X ). Because the sublevel sets of the weighted
entropy are d1-compact (Han-Li again), up to a subsequence the φj

d1-converge to some ψ ∈ E1
T. Thus, by the previous Lemma

MAv (ψ) = lim
j

MAv (φj).

On the other hand, by the MAv equation above and L1-convergence of gj to g
we have that

MAv (φ) = lim
j

MAv (φj).

Thus u = φ+ c for some constant, so that up to substracting constants uj is
the desired sequence.
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gj ∈ C∞T (X ) such that∫
X

gj log gj ω
[m]
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The Iv functional and the weighted d1-distance.

We define the weighted length of a smooth curve t 7→ φt ∈ KT: for
v ∈ C∞(∆)>0,

`1,v ({φt}t) =

∫ 1

0

(∫
X

|φ̇t |v(µφt ) MA(φt)

)
dt.

We then set
d1,v (φ0, φ1) = inf

t 7→φt

`1,v ({φt}t)

among all smooth curves joining φ0 and φ1 in KT. It is a distance, and in fact
equivalent to the d1-distance:

Lemma

If v > 0 there exists C > 0 such that for all φ0, φ1 ∈ KT:

C−1d1(φ0, φ1) ≤ d1,v (φ0, φ1) ≤ C d1(φ0, φ1).

(This is due to the fact that v is bounded on ∆.)

12 / 16



The Iv functional and the weighted d1-distance.

We define the weighted length of a smooth curve t 7→ φt ∈ KT: for
v ∈ C∞(∆)>0,

`1,v ({φt}t) =

∫ 1

0

(∫
X

|φ̇t |v(µφt ) MA(φt)

)
dt.

We then set
d1,v (φ0, φ1) = inf

t 7→φt

`1,v ({φt}t)

among all smooth curves joining φ0 and φ1 in KT.

It is a distance, and in fact
equivalent to the d1-distance:

Lemma

If v > 0 there exists C > 0 such that for all φ0, φ1 ∈ KT:

C−1d1(φ0, φ1) ≤ d1,v (φ0, φ1) ≤ C d1(φ0, φ1).

(This is due to the fact that v is bounded on ∆.)

12 / 16



The Iv functional and the weighted d1-distance.

We define the weighted length of a smooth curve t 7→ φt ∈ KT: for
v ∈ C∞(∆)>0,

`1,v ({φt}t) =

∫ 1

0

(∫
X

|φ̇t |v(µφt ) MA(φt)

)
dt.

We then set
d1,v (φ0, φ1) = inf

t 7→φt

`1,v ({φt}t)

among all smooth curves joining φ0 and φ1 in KT. It is a distance, and in fact
equivalent to the d1-distance:

Lemma

If v > 0 there exists C > 0 such that for all φ0, φ1 ∈ KT:

C−1d1(φ0, φ1) ≤ d1,v (φ0, φ1) ≤ C d1(φ0, φ1).

(This is due to the fact that v is bounded on ∆.)

12 / 16



It is closely related to the Iv functional defined by its variation:

(dφIv )(φ̇) =

∫
X

φ̇v(µφ)MA(φ).

It follows that Iv is d1,v -Lipschitz: given a curve φt joining φ0, φ1 in KT, one has

|Iv (φ0)− Iv (φ1)| =

∣∣∣∣∫ 1

0

(dφt Iv )(φ̇t)

∣∣∣∣
≤
∫ 1

0

(∫
X

∣∣∣φ̇t

∣∣∣ v(µφt )MA(φt)

)
≤ `1,v ({φt}t),

so that in particular

|Iv (φ0)− Iv (φ1)| ≤ inf `1,v ({φt}t) = d1,v (φ0, φ1).

By the previous Lemma, this is smaller than a constant times d1(φ0, φ1), hence
Iv is d1-Lipschitz. This allows us to extend it to E1

T. Note that Iv is by
definition linear in v , which furthermore allows us to extend it by linearity to
nonpositive weights.

13 / 16



It is closely related to the Iv functional defined by its variation:

(dφIv )(φ̇) =

∫
X

φ̇v(µφ)MA(φ).

It follows that Iv is d1,v -Lipschitz: given a curve φt joining φ0, φ1 in KT, one has

|Iv (φ0)− Iv (φ1)| =

∣∣∣∣∫ 1

0

(dφt Iv )(φ̇t)

∣∣∣∣
≤
∫ 1

0

(∫
X

∣∣∣φ̇t

∣∣∣ v(µφt )MA(φt)

)
≤ `1,v ({φt}t),

so that in particular

|Iv (φ0)− Iv (φ1)| ≤ inf `1,v ({φt}t) = d1,v (φ0, φ1).

By the previous Lemma, this is smaller than a constant times d1(φ0, φ1), hence
Iv is d1-Lipschitz. This allows us to extend it to E1

T. Note that Iv is by
definition linear in v , which furthermore allows us to extend it by linearity to
nonpositive weights.

13 / 16



It is closely related to the Iv functional defined by its variation:

(dφIv )(φ̇) =

∫
X

φ̇v(µφ)MA(φ).

It follows that Iv is d1,v -Lipschitz: given a curve φt joining φ0, φ1 in KT, one has

|Iv (φ0)− Iv (φ1)| =

∣∣∣∣∫ 1

0

(dφt Iv )(φ̇t)

∣∣∣∣
≤
∫ 1

0

(∫
X

∣∣∣φ̇t

∣∣∣ v(µφt )MA(φt)

)
≤ `1,v ({φt}t),

so that in particular

|Iv (φ0)− Iv (φ1)| ≤ inf `1,v ({φt}t) = d1,v (φ0, φ1).

By the previous Lemma, this is smaller than a constant times d1(φ0, φ1), hence
Iv is d1-Lipschitz. This allows us to extend it to E1

T. Note that Iv is by
definition linear in v , which furthermore allows us to extend it by linearity to
nonpositive weights.

13 / 16



It is closely related to the Iv functional defined by its variation:

(dφIv )(φ̇) =

∫
X

φ̇v(µφ)MA(φ).

It follows that Iv is d1,v -Lipschitz: given a curve φt joining φ0, φ1 in KT, one has

|Iv (φ0)− Iv (φ1)| =

∣∣∣∣∫ 1

0

(dφt Iv )(φ̇t)

∣∣∣∣
≤
∫ 1

0

(∫
X

∣∣∣φ̇t

∣∣∣ v(µφt )MA(φt)

)
≤ `1,v ({φt}t),

so that in particular

|Iv (φ0)− Iv (φ1)| ≤ inf `1,v ({φt}t) = d1,v (φ0, φ1).

By the previous Lemma, this is smaller than a constant times d1(φ0, φ1), hence
Iv is d1-Lipschitz. This allows us to extend it to E1

T. Note that Iv is by
definition linear in v , which furthermore allows us to extend it by linearity to
nonpositive weights.

13 / 16



A few words on I ρv .

Let ρ be an invariant closed (1, 1)-form. We again define I ρv by its variation

(dφIv )(φ̇) :=

∫
X

φ̇(v(µφ)ρ ∧ ω[m−1]
φ + 〈(dv)(µφ), µρ〉ω[m]

φ ).

One has the following:

Proposition

I ρv extends to a d1-continuous functional on E1
T, which is bounded on bounded

subsets; furthermore this extension is linear and continuous in v (wrt C 1(∆)).

The proof relies on somewhat tedious computation, based on [BDL]. The key is
to obtain an explicit expression for I ρv (φ1)− I ρv (φ0) (which brings us to the next
page...)

14 / 16



A few words on I ρv .

Let ρ be an invariant closed (1, 1)-form. We again define I ρv by its variation

(dφIv )(φ̇) :=

∫
X

φ̇(v(µφ)ρ ∧ ω[m−1]
φ + 〈(dv)(µφ), µρ〉ω[m]

φ ).

One has the following:

Proposition

I ρv extends to a d1-continuous functional on E1
T, which is bounded on bounded

subsets; furthermore this extension is linear and continuous in v (wrt C 1(∆)).

The proof relies on somewhat tedious computation, based on [BDL]. The key is
to obtain an explicit expression for I ρv (φ1)− I ρv (φ0) (which brings us to the next
page...)

14 / 16



A few words on I ρv .

Let ρ be an invariant closed (1, 1)-form. We again define I ρv by its variation

(dφIv )(φ̇) :=

∫
X

φ̇(v(µφ)ρ ∧ ω[m−1]
φ + 〈(dv)(µφ), µρ〉ω[m]

φ ).

One has the following:

Proposition

I ρv extends to a d1-continuous functional on E1
T, which is bounded on bounded

subsets; furthermore this extension is linear and continuous in v (wrt C 1(∆)).

The proof relies on somewhat tedious computation, based on [BDL]. The key is
to obtain an explicit expression for I ρv (φ1)− I ρv (φ0) (which brings us to the next
page...)

14 / 16



I ρv (φ1)− I ρv (φ0)

=

∫
X

(φ1 − φ0)

(
m−1∑
j=0

[∫ 1

0

s j(1− s)m−1−jv(sµ1 + (1− s)µ0)ds

]
ρ ∧ ω[j]

1 ∧ ω
[m−j−1]
0

)

+

∫
X

(φ1 − φ0)

(
m−1∑
j=0

〈∫ 1

0

s j(1− s)m−1−j(dv)(sµ1 + (1− s)µ0)ds, µρ

〉
ω

[j]
1 ∧ ω

[m−j]
0

)
.

For example, for the C 1-estimate, one uses linearity: I ρv (φ)− I ρw (φ) = I ρv−w (φ).
Then, this formula for φ1 = φ, φ0 = 0 allows us to have an estimate of the form

|I ρv−w (φ)| ≤ C‖v − w‖C1(∆)

∫
X

∑
|φ|ω[j]

φ ∧ ω
[m−j]
0

≤ C ′‖v − w‖C1(∆)

∫
X

|φ|ω[m]
φ ,

as desired.
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Conclusion

• We have extended all components of the Chen-Tian formula to E1
T, which

gives a d1-lsc extension of Mv,w to that space.

• We have to show that it is the largest such extension. By the entropy
approximation Lemma, given φ ∈ E1

T, one can find a sequence (φj)j in KT
conveging in d1 and in weighted entropy to φ. On the other hand, Iw and I ρv
are d1-continuous, so that

Mv,w (φj)→j→∞ Mv,w (φ)

and the desired statement follows.

• Regarding linearity in v , w : since all the other components are linear, we need
only look at the entropy. In fact we will need the additional ”constant” term:

Ent(ω
[m]
0 , MAv (φ))−

∫
X

log(v(µ0))v(µ0)ω
[m]
0 =

∫
X

log (MA(φ)/ωm
0 ) MAv (φ),

which is linear, as desired!

• Regarding geodesics: Lahdili proved that Mv,w is convex along Mabuchi
geodesics in KT (closely following Berman-Berndtsson). The general result
then follows from entropy approximation.

Fin.
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