Setup: X compact Kähler manifold, dim_R X = 2m. $\mathbb{T} \subset Aut_{red}(X)$ compact torus, ω_0 \mathbb{T} -invariant Kähler metric. Δ is the image of the moment map $\mu_0 : X \to t^*$ associated to ω_0 . We consider weights v > 0, w in $C^{\infty}(\Delta)$.

Setup: X compact Kähler manifold, dim_R X = 2m. $\mathbb{T} \subset Aut_{red}(X)$ compact torus, ω_0 T-invariant Kähler metric. Δ is the image of the moment map $\mu_0 : X \to t^*$ associated to ω_0 . We consider weights v > 0, w in $C^{\infty}(\Delta)$.

 $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$ denotes the space of \mathbb{T} -invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}(X, \omega_0)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi} := \omega + dd^c \phi$, normalized so that its image is Δ .

Setup: X compact Kähler manifold, dim_R X = 2m. $\mathbb{T} \subset Aut_{red}(X)$ compact torus, ω_0 T-invariant Kähler metric. Δ is the image of the moment map $\mu_0 : X \to t^*$ associated to ω_0 . We consider weights v > 0, w in $C^{\infty}(\Delta)$.

 $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$ denotes the space of \mathbb{T} -invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}(X, \omega_0)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi} := \omega + dd^c \phi$, normalized so that its image is Δ . The d_1 -completion of $\mathcal{K}_{\mathbb{T}}$ is the space

$$\mathcal{E}^1_{\mathbb{T}}(X,\omega_0):=\left\{\phi\in \mathrm{PSH}_{\mathbb{T}}(X,\omega_0),\,\int_X |\phi|(\omega_\phi)^m<\infty
ight\}.$$

Setup: X compact Kähler manifold, dim_R X = 2m. $\mathbb{T} \subset Aut_{red}(X)$ compact torus, ω_0 T-invariant Kähler metric. Δ is the image of the moment map $\mu_0 : X \to t^*$ associated to ω_0 . We consider weights v > 0, w in $C^{\infty}(\Delta)$.

 $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$ denotes the space of \mathbb{T} -invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}(X, \omega_0)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi} := \omega + dd^c \phi$, normalized so that its image is Δ . The d_1 -completion of $\mathcal{K}_{\mathbb{T}}$ is the space

$$\mathcal{E}^1_{\mathbb{T}}(\mathsf{X},\omega_0) := \left\{ \phi \in \mathrm{PSH}_{\mathbb{T}}(\mathsf{X},\omega_0), \, \int_{\mathsf{X}} |\phi|(\omega_\phi)^m < \infty
ight\}.$$

Today, we will look into the extension of $M_{v,w}$ to the space $\mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$.

$$M_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]}$$

$$\mathbf{M}_{\nu,w}(\phi) = \int_{X} \log\left(\frac{\nu(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \nu(\mu_{\phi})\omega_{\phi}^{[m]} + \mathbf{I}_{\omega}(\phi) - 2\mathbf{I}_{\nu}^{\mathrm{Ric}\omega_{0}}(\phi)$$

$$\mathbf{M}_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + \mathbf{I}_{\omega}(\phi) - 2\mathbf{I}_{\mathbf{v}}^{\mathrm{Ric}\omega_{0}}(\phi) - \int_{X} \log(\mathbf{v}(\mu_{0}))\mathbf{v}(\mu_{0})\omega_{0}^{[m]}$$

$$\mathrm{M}_{\mathsf{v},\mathsf{w}}(\phi) = \int_{\mathcal{X}} \log\left(\frac{\mathsf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathsf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + \mathrm{I}_{\omega}(\phi) - 2\mathrm{I}_{\mathsf{v}}^{\mathrm{Ric}_{\omega_{0}}}(\phi) - \int_{\mathcal{X}} \log(\mathsf{v}(\mu_{0}))\mathsf{v}(\mu_{0})\omega_{0}^{[m]}$$

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

$$M_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + I_{\omega}(\phi) - 2I_{\mathbf{v}}^{\operatorname{Ric}_{\omega_{0}}}(\phi) - \int_{X} \log(\mathbf{v}(\mu_{0}))\mathbf{v}(\mu_{0})\omega_{0}^{[m]}$$

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

2. I_w term: need estimates relating d_1 and the weighted distance $d_{1,w}$.

$$\mathbf{M}_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + \mathbf{I}_{\omega}(\phi) - 2\mathbf{I}_{\mathbf{v}}^{\mathrm{Ric}\omega_{0}}(\phi) - \int_{X} \log(\mathbf{v}(\mu_{0}))\mathbf{v}(\mu_{0})\omega_{0}^{[m]}$$

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

2. I_w term: need estimates relating d_1 and the weighted distance $d_{1,w}$.

3. twisted I term: computation+proof of Berman-Darvas-Lu.

$$\mathbf{M}_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + \mathbf{I}_{\omega}(\phi) - 2\mathbf{I}_{\mathbf{v}}^{\mathrm{Ric}\omega_{0}}(\phi) - \int_{X} \log(\mathbf{v}(\mu_{0}))\mathbf{v}(\mu_{0})\omega_{0}^{[m]}$$

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

2. I_w term: need estimates relating d_1 and the weighted distance $d_{1,w}$.

3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

Theorem

The Chen-Tian formula gives the largest d₁-lsc extension of $M_{v,w}$ on $\mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$. Furthermore, this extended $M_{v,w}$ is linear in v, w, uniformly continuous in w wrt $C^0(\Delta)$ and continuous in v wrt $C^1(\Delta)$

$$M_{\mathbf{v},\mathbf{w}}(\phi) = \int_{X} \log\left(\frac{\mathbf{v}(\mu_{\phi})\omega_{\phi}^{m}}{\omega_{0}^{m}}\right) \mathbf{v}(\mu_{\phi})\omega_{\phi}^{[m]} + I_{\omega}(\phi) - 2I_{\mathbf{v}}^{\operatorname{Ric}\omega_{0}}(\phi) - \int_{X} \log(\mathbf{v}(\mu_{0}))\mathbf{v}(\mu_{0})\omega_{0}^{[m]}$$

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

2. I_w term: need estimates relating d_1 and the weighted distance $d_{1,w}$.

3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

Theorem

The Chen-Tian formula gives the largest d_1 -lsc extension of $M_{v,w}$ on $\mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$. Furthermore, this extended $M_{v,w}$ is linear in v, w, uniformly continuous in w wrt $C^0(\Delta)$ and continuous in v wrt $C^1(\Delta)$, and is convex along weak Mabuchi geodesics. The non-weighted case. By BBEGZ, the Monge-Ampère operator

 $\phi \mapsto MA(\phi)$

extends to $\mathcal{E}^1(X, \omega_0)$.

The non-weighted case. By BBEGZ, the Monge-Ampère operator

 $\phi \mapsto MA(\phi)$

extends to $\mathcal{E}^1(X, \omega_0)$. The entropy is extended to \mathcal{E}^1 in a measure-theoretic sense:

$$\operatorname{Ent}(\omega_0^{[m]}, \omega_{\phi}^{[m]}) = \int_X \log\left(\frac{\omega_{\phi}^{[m]}}{\omega_0^{[m]}}\right) \omega_{\phi}^{[m]}$$

(where $\frac{\omega_{\phi}^{m}}{\omega_{0}^{m}}$ is understood as a Radon-Nikodym derivative).

The non-weighted case. By BBEGZ, the Monge-Ampère operator

 $\phi \mapsto MA(\phi)$

extends to $\mathcal{E}^1(X, \omega_0)$. The entropy is extended to \mathcal{E}^1 in a measure-theoretic sense:

$$\operatorname{Ent}(\omega_0^{[m]}, \omega_{\phi}^{[m]}) = \int_X \log\left(\frac{\omega_{\phi}^{[m]}}{\omega_0^{[m]}}\right) \omega_{\phi}^{[m]}$$

(where $\frac{\omega_{\phi}^{m}}{\omega_{0}^{m}}$ is understood as a Radon-Nikodym derivative).

In the weighted case, we need to understand the operator

$$\mathrm{MA}_{\mathsf{v}}(\phi) := \mathsf{v}(\mu_{\phi})\omega_{\phi}^{[m]}$$

on $\mathcal{E}^1_{\mathbb{T}}$ in order to define our entropy term $\operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi)).$

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto MA_{\nu}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}_{\mathbb{T}}^{1}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}_{\mathbb{T}}^{1}$ (wrt the weak topology of measures).

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto MA_{\nu}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}_{\mathbb{T}}^{1}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}_{\mathbb{T}}^{1}$ (wrt the weak topology of measures).

First step: the case of polynomial v. We assume that v > 0 is of the form

$$\mathbf{v}(\mu) = \prod_{a=1}^k (\langle \mathbf{v}_a, \mu
angle + \mathbf{c}_a)^{n_a}.$$

We construct an associated semisimple principal fibration $(Y, \tilde{\omega}_{\phi})$, which will allow us to compute $\int_X f \operatorname{MA}_v(\phi)$ for torus-invariant continuous functions f on X (as in Tran-Trung's talk).

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto MA_{\nu}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}^{\mathbb{T}}_{\mathbb{T}}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}^{\mathbb{T}}_{\mathbb{T}}$ (wrt the weak topology of measures).

First step: the case of polynomial v. We assume that v > 0 is of the form

$$\mathsf{v}(\mu) = \prod_{a=1}^k (\langle \mathsf{v}_a, \mu
angle + \mathsf{c}_a)^{n_a}.$$

We construct an associated semisimple principal fibration $(Y, \tilde{\omega}_{\phi})$, which will allow us to compute $\int_X f \operatorname{MA}_v(\phi)$ for torus-invariant continuous functions f on X (as in Tran-Trung's talk).Namely, from Simon's talk, we will have that

$$\int_{Y} f \, \tilde{\omega}_{\phi}^{[m+n]} = v_{B}^{-1} \int_{X} f \, v(\mu_{\phi}) \, \omega_{\phi}^{[m]}$$

with v_B the volume of the base of the fibration.

Define the base of the fibration as $B = B_1 \times \cdots \times B_k$ where $B_a = (\mathbb{P}^{n_a}, \omega_a)$, with Fubini-Study metrics of scalar curvature $= 2n_a(n_a + 1)$.

Define the base of the fibration as $B = B_1 \times \cdots \times B_k$ where $B_a = (\mathbb{P}^{n_a}, \omega_a)$, with Fubini-Study metrics of scalar curvature $= 2n_a(n_a + 1)$. We pick $\pi_B : P \to B$ a principal \mathbb{T} -bundle with a connection θ whose curvature is

$$d heta = \sum_{{\sf a}=1}^k (\pi_B^*\omega_{\sf a})\otimes {\sf v}_{\sf a}.$$

Define the base of the fibration as $B = B_1 \times \cdots \times B_k$ where $B_a = (\mathbb{P}^{n_a}, \omega_a)$, with Fubini-Study metrics of scalar curvature $= 2n_a(n_a + 1)$. We pick $\pi_B : P \to B$ a principal \mathbb{T} -bundle with a connection θ whose curvature is

$$d heta = \sum_{a=1}^k (\pi_B^*\omega_a) \otimes v_a.$$

We then set $Y = (X \times P)/(\mathbb{T}_{X \times P})$, and define

$$ilde{\omega}_0 := \omega_0 + \sum_{a=1}^k (\langle \mathsf{v}_a, \mu_{\omega_0}
angle + \mathsf{c}_a) \pi_B^* \omega_a + \langle d\mu_{\omega_0} \wedge heta
angle.$$

It is a 2-form on $X \times P$ which descends to a \mathbb{T}_{Y} -invariant Kähler form $\tilde{\omega}_0$ on Y (Tran-Trung's talk again).

Theorem

We have a well-defined embedding ι of the set of ω_0 -integrable \mathbb{T} -invariant functions on X into the set of $\tilde{\omega}_0$ -integrable \mathbb{T}_Y -invariant functions on Y, sending smooth functions to smooth functions;

Define the base of the fibration as $B = B_1 \times \cdots \times B_k$ where $B_a = (\mathbb{P}^{n_a}, \omega_a)$, with Fubini-Study metrics of scalar curvature $= 2n_a(n_a + 1)$. We pick $\pi_B : P \to B$ a principal \mathbb{T} -bundle with a connection θ whose curvature is

$$d heta = \sum_{a=1}^k (\pi_B^*\omega_a) \otimes v_a.$$

We then set $Y = (X \times P)/(\mathbb{T}_{X \times P})$, and define

$$ilde{\omega}_0 := \omega_0 + \sum_{a=1}^k (\langle \mathsf{v}_a, \mu_{\omega_0}
angle + \mathsf{c}_a) \pi_B^* \omega_a + \langle \mathsf{d} \mu_{\omega_0} \wedge heta
angle.$$

It is a 2-form on $X \times P$ which descends to a \mathbb{T}_Y -invariant Kähler form $\tilde{\omega}_0$ on Y (Tran-Trung's talk again).

Theorem

We have a well-defined embedding ι of the set of ω_0 -integrable \mathbb{T} -invariant functions on X into the set of $\tilde{\omega}_0$ -integrable \mathbb{T}_Y -invariant functions on Y, sending smooth functions to smooth functions; it induces an embedding

$$\mathcal{K}_{\mathbb{T}}(X,\omega_0) \hookrightarrow \mathcal{K}_{\mathbb{T}}(Y,\tilde{\omega}_0), \, \omega_{\phi} \mapsto \tilde{\omega}_{\iota(\phi)}$$

such that the form induced by ω_{ϕ} on Y coincides with $\tilde{\omega}_{\iota(\phi)}$. (In particular, d_1 -isometry.)

We have the following integration formula:

$$\int_Y f \, ilde{\omega}_\phi^{[m+n]} = v_B^{-1} \int_X \iota(f) \, v(\mu_\phi) \, \omega_\phi^{[m]}$$

with $v_B := \operatorname{vol}(B, \omega_B)$.

We have the following integration formula:

$$\int_{Y} f \, \tilde{\omega}_{\phi}^{[m+n]} = \mathsf{v}_{\mathsf{B}}^{-1} \int_{X} \iota(f) \, \mathsf{v}(\mu_{\phi}) \, \omega_{\phi}^{[m]}$$

with $v_B := \operatorname{vol}(B, \omega_B)$.

Now, pick $\phi \in \mathcal{E}_{\mathbb{T}}^1(X, \omega_0)$, and approximate it by a decreasing sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$.

We have the following integration formula:

$$\int_{Y} f \, \tilde{\omega}_{\phi}^{[m+n]} = \mathsf{v}_{\mathsf{B}}^{-1} \int_{X} \iota(f) \, \mathsf{v}(\mu_{\phi}) \, \omega_{\phi}^{[m]}$$

with $v_B := \operatorname{vol}(B, \omega_B)$.

Now, pick $\phi \in \mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$, and approximate it by a decreasing sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$. Each ϕ_j also defines a metric in $\mathcal{K}_{\mathbb{T}}(Y, \tilde{\omega}_0)$, so that by the integration formula, for each $f \in C^0_{\mathbb{T}}(X)$,

$$\int_{Y} f \, \tilde{\omega}_{\phi_j}^{[m+n]} = \mathsf{v}_B^{-1} \cdot \int_{X} \mathsf{v}(\mu_{\phi_j}) f \, \omega_{\phi_j}^{[m]}$$

We have the following integration formula:

$$\int_{Y} f \, \tilde{\omega}_{\phi}^{[m+n]} = \mathsf{v}_{B}^{-1} \int_{X} \iota(f) \, \mathsf{v}(\mu_{\phi}) \, \omega_{\phi}^{[m]}$$

with $v_B := \operatorname{vol}(B, \omega_B)$.

Now, pick $\phi \in \mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$, and approximate it by a decreasing sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$. Each ϕ_j also defines a metric in $\mathcal{K}_{\mathbb{T}}(Y, \tilde{\omega}_0)$, so that by the integration formula, for each $f \in C^0_{\mathbb{T}}(X)$,

$$\int_{\mathsf{Y}} f \, \tilde{\omega}_{\phi_j}^{[m+n]} = \mathsf{v}_B^{-1} \cdot \int_{\mathsf{X}} \mathsf{v}(\mu_{\phi_j}) f \, \omega_{\phi_j}^{[m]}$$

We thus define

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi) := \lim_{j \to \infty} \int_Y f \, \tilde{\omega}_{\phi_j}^{[m+n]}.$$

We have the following integration formula:

$$\int_{Y} f \, \tilde{\omega}_{\phi}^{[m+n]} = \mathsf{v}_{B}^{-1} \int_{X} \iota(f) \, \mathsf{v}(\mu_{\phi}) \, \omega_{\phi}^{[m]}$$

with $v_B := \operatorname{vol}(B, \omega_B)$.

Now, pick $\phi \in \mathcal{E}^1_{\mathbb{T}}(X, \omega_0)$, and approximate it by a decreasing sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}(X, \omega_0)$. Each ϕ_j also defines a metric in $\mathcal{K}_{\mathbb{T}}(Y, \tilde{\omega}_0)$, so that by the integration formula, for each $f \in C^0_{\mathbb{T}}(X)$,

$$\int_{\mathsf{Y}} f \, \tilde{\omega}_{\phi_j}^{[m+n]} = \mathsf{v}_B^{-1} \cdot \int_{\mathsf{X}} \mathsf{v}(\mu_{\phi_j}) f \, \omega_{\phi_j}^{[m]}$$

We thus define

$$\int_X f \operatorname{MA}_{\nu}(\phi) := \lim_{j \to \infty} \int_Y f \, \tilde{\omega}_{\phi_j}^{[m+n]}.$$

For general $f \in C^0(X)$, we define $f^{\mathbb{T}}$ to be the \mathbb{T} -invariant function defined by the average of f over torus orbits, and set

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi) := \int_X f^{\mathbb{T}} \operatorname{MA}_{\mathsf{v}}(\phi).$$

Because $f \mapsto f^{\mathbb{T}}$ is linear, this defines a positive Radon measure by Riesz-Markov-Kakutani.

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$\left|\int_{X} f \operatorname{MA}_{v_{p}}(\phi) - \int_{X} f \operatorname{MA}_{v_{q}}(\phi)\right| \leq \|v_{p} - v_{q}\|_{C^{0}(\Delta)} \int_{X} |f| \operatorname{MA}(\phi)$$

for two such v_p , v_q .

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$\left|\int_{X} f \operatorname{MA}_{v_{p}}(\phi) - \int_{X} f \operatorname{MA}_{v_{q}}(\phi)\right| \leq \|v_{p} - v_{q}\|_{C^{0}(\Delta)} \int_{X} |f| \operatorname{MA}(\phi)$$

for two such v_p , v_q . This cone is dense in $C_{>0}^{\infty}(\Delta)$, so that, given an arbitrary $v \in C_{>0}^{\infty}(\Delta)$, which we approximate by a sequence $(v_k)_k$ of positive polynomials, we define

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi) := \lim_{k \to \infty} \int_X f \operatorname{MA}_{\mathsf{v}_k}(\phi)$$

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$\left|\int_{X} f \operatorname{MA}_{v_{p}}(\phi) - \int_{X} f \operatorname{MA}_{v_{q}}(\phi)\right| \leq \|v_{p} - v_{q}\|_{C^{0}(\Delta)} \int_{X} |f| \operatorname{MA}(\phi)$$

for two such v_p , v_q . This cone is dense in $C_{>0}^{\infty}(\Delta)$, so that, given an arbitrary $v \in C_{>0}^{\infty}(\Delta)$, which we approximate by a sequence $(v_k)_k$ of positive polynomials, we define

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi) := \lim_{k \to \infty} \int_X f \operatorname{MA}_{\mathsf{v}_k}(\phi)$$

This again defines a positive Radon measure, and concludes the proof of the extension of MA_{ν} (+ a C⁰-estimate).

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_v(\phi_j) \to \mathrm{MA}_v(\phi)$ weakly.

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_v(\phi_j) \to \mathrm{MA}_v(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu) = \prod_{a=1}^{k} (\langle v_a, \mu \rangle + c_a)^{n_a}$ and construct a fibration Y as before.

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_\nu(\phi_j) \to \mathrm{MA}_\nu(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu) = \prod_{a=1}^{k} (\langle v_a, \mu \rangle + c_a)^{n_a}$ and construct a fibration Y as before. Note that even if the ϕ_j are in $\mathcal{E}^1_{\mathbb{T}}$, we can approximate with smooth $(\phi_{j,k})_k$ so that for $f \in C^0_{\mathbb{T}}(X)$ we have

$$\int_{X} f \operatorname{MA}_{v}(\phi_{j}) = \lim_{k} \int_{X} f \operatorname{MA}_{v}(\phi_{j,k}) = v_{B}^{-1} \lim_{k} \int_{Y} f \operatorname{MA}(\phi_{j,k}) = v_{B}^{-1} \int_{Y} f \operatorname{MA}(\phi_{j}).$$

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_\nu(\phi_j) \to \mathrm{MA}_\nu(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu) = \prod_{a=1}^{k} (\langle v_a, \mu \rangle + c_a)^{n_a}$ and construct a fibration Y as before. Note that even if the ϕ_j are in $\mathcal{E}^1_{\mathbb{T}}$, we can approximate with smooth $(\phi_{j,k})_k$ so that for $f \in C^0_{\mathbb{T}}(X)$ we have

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi_j) = \lim_k \int_X f \operatorname{MA}_{\mathsf{v}}(\phi_{j,k}) = \mathsf{v}_B^{-1} \lim_k \int_Y f \operatorname{MA}(\phi_{j,k}) = \mathsf{v}_B^{-1} \int_Y f \operatorname{MA}(\phi_j).$$

Because $d_1(\phi_j, \phi) \rightarrow 0$, due to the embedding Theorem the same holds on Y. Therefore,

 $\operatorname{MA}^{Y}(\phi_{j}) \rightarrow_{j} \operatorname{MA}^{Y}(\phi).$

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_{\nu}(\phi_j) \to \mathrm{MA}_{\nu}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu) = \prod_{a=1}^{k} (\langle v_a, \mu \rangle + c_a)^{n_a}$ and construct a fibration Y as before. Note that even if the ϕ_j are in $\mathcal{E}^1_{\mathbb{T}}$, we can approximate with smooth $(\phi_{j,k})_k$ so that for $f \in C^0_{\mathbb{T}}(X)$ we have

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi_j) = \lim_k \int_X f \operatorname{MA}_{\mathsf{v}}(\phi_{j,k}) = \mathsf{v}_B^{-1} \lim_k \int_Y f \operatorname{MA}(\phi_{j,k}) = \mathsf{v}_B^{-1} \int_Y f \operatorname{MA}(\phi_j).$$

Because $d_1(\phi_j, \phi) \rightarrow 0$, due to the embedding Theorem the same holds on Y. Therefore,

$$\operatorname{MA}^{Y}(\phi_{j}) \rightarrow_{j} \operatorname{MA}^{Y}(\phi).$$

Thus

$$\begin{split} \lim_{j} \int_{X} f \operatorname{MA}_{v}(\phi_{j}) &= v_{B}^{-1} \lim_{j} \int_{Y} f \operatorname{MA}(\phi_{j}) \\ &= v_{B}^{-1} \int_{Y} f \operatorname{MA}(\phi) \\ &= \int_{X} f \operatorname{MA}_{v}(\phi). \end{split}$$

If $(\phi_j)_j$ is a sequence in $\mathcal{E}^1_{\mathbb{T}}$ such that $d_1(\phi_j, \phi) \to 0$ for some $\phi \in \mathcal{E}^1_{\mathbb{T}}$, then $\mathrm{MA}_{\nu}(\phi_j) \to \mathrm{MA}_{\nu}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu) = \prod_{a=1}^{k} (\langle v_a, \mu \rangle + c_a)^{n_a}$ and construct a fibration Y as before. Note that even if the ϕ_j are in $\mathcal{E}^1_{\mathbb{T}}$, we can approximate with smooth $(\phi_{j,k})_k$ so that for $f \in C^0_{\mathbb{T}}(X)$ we have

$$\int_X f \operatorname{MA}_{\mathsf{v}}(\phi_j) = \lim_k \int_X f \operatorname{MA}_{\mathsf{v}}(\phi_{j,k}) = \mathsf{v}_B^{-1} \lim_k \int_Y f \operatorname{MA}(\phi_{j,k}) = \mathsf{v}_B^{-1} \int_Y f \operatorname{MA}(\phi_j).$$

Because $d_1(\phi_j, \phi) \to 0$, due to the embedding Theorem the same holds on Y. Therefore,

$$\operatorname{MA}^{Y}(\phi_{j}) \rightarrow_{j} \operatorname{MA}^{Y}(\phi).$$

Thus

$$\begin{split} \lim_{j} \int_{X} f \operatorname{MA}_{v}(\phi_{j}) &= v_{B}^{-1} \lim_{j} \int_{Y} f \operatorname{MA}(\phi_{j}) \\ &= v_{B}^{-1} \int_{Y} f \operatorname{MA}(\phi) \\ &= \int_{X} f \operatorname{MA}_{v}(\phi). \end{split}$$

This holds for non-torus-invariant f by considering $f^{\mathbb{T}}$ as before.

For an arbitrary positive weight v, we approximate it by polynomials $(v_i)_i$ of the above type in the $C^0(\Delta)$ -topology.

For an arbitrary positive weight v, we approximate it by polynomials $(v_i)_i$ of the above type in the $C^0(\Delta)$ -topology. For $f \in C^0(X)$ we have

$$\begin{split} &\left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) \right| + \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| \\ &+ \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| + \| \nu_{i} - \nu \|_{C^{0}(\Delta)} \left(\int_{X} |f| (\operatorname{MA}(\phi_{j}) + \operatorname{MA}(\phi)) \right) \end{split}$$

For an arbitrary positive weight v, we approximate it by polynomials $(v_i)_i$ of the above type in the $C^0(\Delta)$ -topology. For $f \in C^0(X)$ we have

$$\begin{split} &\left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) \right| + \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| \\ &+ \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| + \| \nu_{i} - \nu \|_{C^{0}(\Delta)} \left(\int_{X} |f| (\operatorname{MA}(\phi_{j}) + \operatorname{MA}(\phi)) \right) \end{split}$$

We take the limit in j, so that

$$\lim_{j} \left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \leq 2 \|v_{i} - v\|_{C^{0}(\Delta)} \left(\int_{X} |f| \operatorname{MA}(\phi) \right)$$

by continuity of the unweighted MA.

For an arbitrary positive weight v, we approximate it by polynomials $(v_i)_i$ of the above type in the $C^0(\Delta)$ -topology. For $f \in C^0(X)$ we have

$$\begin{split} &\left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) \right| + \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| \\ &+ \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \\ &\leq \left| \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu_{i}}(\phi) \right| + \| \nu_{i} - \nu \|_{C^{0}(\Delta)} \left(\int_{X} |f| (\operatorname{MA}(\phi_{j}) + \operatorname{MA}(\phi)) \right) \end{split}$$

We take the limit in j, so that

$$\lim_{j} \left| \int_{X} f \operatorname{MA}_{\nu}(\phi_{j}) - \int_{X} f \operatorname{MA}_{\nu}(\phi) \right| \leq 2 \|v_{i} - v\|_{C^{0}(\Delta)} \left(\int_{X} |f| \operatorname{MA}(\phi) \right)$$

by continuity of the unweighted MA. Then this limit is shown to be zero by taking $i \to \infty$, which implies that $MA_{\nu}(\phi_j) \to_j MA_{\nu}(\phi)$. This concludes the proof of the Lemma.

• The mapping $\phi \mapsto \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi))$ is d_1 -lsc.

• The mapping $\phi \mapsto \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi))$ is d_1 -lsc.

• Given any $\phi \in \mathcal{E}^1_{\mathbb{T}}$, there exists a sequence $\phi_j \in \mathcal{K}_{\mathbb{T}}$ converging in d_1 -distance and in entropy to ϕ .

• The mapping $\phi \mapsto \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi))$ is d_1 -lsc.

• Given any $\phi \in \mathcal{E}^1_{\mathbb{T}}$, there exists a sequence $\phi_j \in \mathcal{K}_{\mathbb{T}}$ converging in d_1 -distance and in entropy to ϕ .

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \text{Ent}(\mu, \nu)$ is lsc on the space of finite measures absolutely cts with respect to μ (wrt weak topology).

• The mapping $\phi \mapsto \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi))$ is d_1 -lsc.

• Given any $\phi \in \mathcal{E}^1_{\mathbb{T}}$, there exists a sequence $\phi_j \in \mathcal{K}_{\mathbb{T}}$ converging in d_1 -distance and in entropy to ϕ .

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \text{Ent}(\mu, \nu)$ is lsc on the space of finite measures absolutely cts with respect to μ (wrt weak topology). One can indeed see that

$$\operatorname{Ent}(\mu,\nu) = \sup_{f \in C^0(X)} \left(\int_X f \, d\nu - \log \int_X e^f \, d\mu \right).$$

Because for fixed f, $\nu \mapsto \int_X f \, d\nu$ is continuous, the entropy is thus a supremum of a family of continuous functions, i.e. lsc.

• The mapping $\phi \mapsto \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi))$ is d_1 -lsc.

• Given any $\phi \in \mathcal{E}^1_{\mathbb{T}}$, there exists a sequence $\phi_j \in \mathcal{K}_{\mathbb{T}}$ converging in d_1 -distance and in entropy to ϕ .

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \text{Ent}(\mu, \nu)$ is lsc on the space of finite measures absolutely cts with respect to μ (wrt weak topology). One can indeed see that

$$\operatorname{Ent}(\mu,\nu) = \sup_{f \in C^0(X)} \left(\int_X f \, d\nu - \log \int_X e^f \, d\mu \right).$$

Because for fixed f, $\nu \mapsto \int_X f \, d\nu$ is continuous, the entropy is thus a supremum of a family of continuous functions, i.e. lsc. Now, by the previous Lemma, MA_{ν} is d_1 -continuous, so that the entropy is d_1 -lsc.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}^1_{\mathbb{T}}$, and set $g := MA_v(\phi)/\omega_0^{[m]}$.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}^1_{\mathbb{T}}$, and set $g := \operatorname{MA}_v(\phi)/\omega_0^{[m]}$. By [BDL], we can L^1 -approximate g via positive functions $g_j \in C^\infty_{\mathbb{T}}(X)$ such that

$$\int_X g_j \log g_j \, \omega_0^{[m]} \to_{j \to \infty} \operatorname{Ent}(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi)).$$

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}^1_{\mathbb{T}}$, and set $g := \operatorname{MA}_v(\phi)/\omega_0^{[m]}$. By [BDL], we can L^1 -approximate g via positive functions $g_j \in C^\infty_{\mathbb{T}}(X)$ such that

$$\int_X g_j \log g_j \, \omega_0^{[m]} \to_{j \to \infty} \operatorname{Ent}(\omega_0^{[m]}, \, \operatorname{MA}_{\nu}(\phi)).$$

We then solve the weighted MA equation (Han-Li):

$$\mathrm{MA}_{\mathbf{v}}(\phi_j) = \left(\frac{\int_X \mathbf{v}(\mu_0)\omega_0^{[m]}}{\int_X \mathbf{g}_j \omega_0^{[m]}} \mathbf{g}_j \omega_0^{[m]}\right),$$

yielding a solution $\phi_j \in C^{\infty}_{\mathbb{T}}(X)$.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}^1_{\mathbb{T}}$, and set $g := \mathrm{MA}_v(\phi)/\omega_0^{[m]}$. By [BDL], we can L^1 -approximate g via positive functions $g_j \in C^\infty_{\mathbb{T}}(X)$ such that

$$\int_X g_j \log g_j \, \omega_0^{[m]} \to_{j \to \infty} \operatorname{Ent}(\omega_0^{[m]}, \, \operatorname{MA}_{\nu}(\phi)).$$

We then solve the weighted MA equation (Han-Li):

$$\mathrm{MA}_{\mathbf{v}}(\phi_j) = \left(\frac{\int_X \mathbf{v}(\mu_0)\omega_0^{[m]}}{\int_X \mathbf{g}_j \omega_0^{[m]}} \mathbf{g}_j \omega_0^{[m]}\right),$$

yielding a solution $\phi_j \in C^{\infty}_{\mathbb{T}}(X)$. Because the sublevel sets of the weighted entropy are d_1 -compact (Han-Li again), up to a subsequence the ϕ_j d_1 -converge to some $\psi \in \mathcal{E}^1_{\mathbb{T}}$. Thus, by the previous Lemma

$$\operatorname{MA}_{v}(\psi) = \lim_{j} \operatorname{MA}_{v}(\phi_{j}).$$

On the other hand, by the MA_{v} equation above and \mathcal{L}^{1} -convergence of g_{j} to g we have that

$$\operatorname{MA}_{\nu}(\phi) = \lim_{j} \operatorname{MA}_{\nu}(\phi_{j}).$$

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}^1_{\mathbb{T}}$, and set $g := \mathrm{MA}_v(\phi)/\omega_0^{[m]}$. By [BDL], we can L^1 -approximate g via positive functions $g_j \in C^\infty_{\mathbb{T}}(X)$ such that

$$\int_X g_j \log g_j \, \omega_0^{[m]} \to_{j \to \infty} \operatorname{Ent}(\omega_0^{[m]}, \, \operatorname{MA}_{\nu}(\phi)).$$

We then solve the weighted MA equation (Han-Li):

$$\mathrm{MA}_{\mathbf{v}}(\phi_j) = \left(\frac{\int_X \mathbf{v}(\mu_0)\omega_0^{[m]}}{\int_X \mathbf{g}_j \omega_0^{[m]}} \mathbf{g}_j \omega_0^{[m]}\right),$$

yielding a solution $\phi_j \in C^{\infty}_{\mathbb{T}}(X)$. Because the sublevel sets of the weighted entropy are d_1 -compact (Han-Li again), up to a subsequence the ϕ_j d_1 -converge to some $\psi \in \mathcal{E}^1_{\mathbb{T}}$. Thus, by the previous Lemma

$$\operatorname{MA}_{\nu}(\psi) = \lim_{j} \operatorname{MA}_{\nu}(\phi_{j}).$$

On the other hand, by the $\,{\rm MA}_{\nu}$ equation above and ${\cal L}^1\text{-}{\rm convergence}$ of g_j to g we have that

$$\operatorname{MA}_{\nu}(\phi) = \lim_{j} \operatorname{MA}_{\nu}(\phi_{j}).$$

Thus $u = \phi + c$ for some constant, so that up to substracting constants u_j is the desired sequence.

The I_v functional and the weighted d_1 -distance.

We define the weighted length of a smooth curve $t \mapsto \phi_t \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$\ell_{1,\nu}(\{\phi_t\}_t) = \int_0^1 \left(\int_X |\dot{\phi}_t| \nu(\mu_{\phi_t}) \operatorname{MA}(\phi_t)\right) dt.$$

The I_v functional and the weighted d_1 -distance.

We define the weighted length of a smooth curve $t \mapsto \phi_t \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$\ell_{1,\nu}(\{\phi_t\}_t) = \int_0^1 \left(\int_X |\dot{\phi}_t| \nu(\mu_{\phi_t}) \operatorname{MA}(\phi_t)\right) dt.$$

We then set

$$d_{1,v}(\phi_0,\phi_1) = \inf_{t \mapsto \phi_t} \ell_{1,v}(\{\phi_t\}_t)$$

among all smooth curves joining ϕ_0 and ϕ_1 in $\mathcal{K}_{\mathbb{T}}$.

The I_v functional and the weighted d_1 -distance.

We define the weighted length of a smooth curve $t \mapsto \phi_t \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$\ell_{1,\nu}(\{\phi_t\}_t) = \int_0^1 \left(\int_X |\dot{\phi}_t| \nu(\mu_{\phi_t}) \operatorname{MA}(\phi_t)\right) dt.$$

We then set

$$d_{1,\nu}(\phi_0,\phi_1) = \inf_{t\mapsto\phi_t}\ell_{1,\nu}(\{\phi_t\}_t)$$

among all smooth curves joining ϕ_0 and ϕ_1 in \mathcal{K}_T . It is a distance, and in fact equivalent to the d_1 -distance:

Lemma

If v > 0 there exists C > 0 such that for all ϕ_0 , $\phi_1 \in \mathcal{K}_{\mathbb{T}}$:

 $C^{-1}d_1(\phi_0,\phi_1) \leq d_{1,\nu}(\phi_0,\phi_1) \leq C d_1(\phi_0,\phi_1).$

(This is due to the fact that v is bounded on Δ .)

It is closely related to the I_{ν} functional defined by its variation:

$$(\boldsymbol{d}_{\phi}\boldsymbol{l}_{\boldsymbol{\nu}})(\dot{\phi}) = \int_{\boldsymbol{X}} \dot{\phi} \boldsymbol{\nu}(\mu_{\phi}) \operatorname{MA}(\phi).$$

It is closely related to the I_{v} functional defined by its variation:

$$(d_{\phi}l_{\nu})(\dot{\phi}) = \int_{X} \dot{\phi} v(\mu_{\phi}) \operatorname{MA}(\phi)$$

It follows that I_v is $d_{1,v}$ -Lipschitz: given a curve ϕ_t joining ϕ_0 , ϕ_1 in $\mathcal{K}_{\mathbb{T}}$, one has

$$\begin{aligned} |I_{\nu}(\phi_0) - I_{\nu}(\phi_1)| &= \left| \int_0^1 (d_{\phi_t} I_{\nu})(\dot{\phi}_t) \right| \\ &\leq \int_0^1 \left(\int_X \left| \dot{\phi}_t \right| v(\mu_{\phi_t}) \operatorname{MA}(\phi_t) \right) \leq \ell_{1,\nu}(\{\phi_t\}_t), \end{aligned}$$

It is closely related to the I_{v} functional defined by its variation:

$$(d_{\phi}l_{\nu})(\dot{\phi}) = \int_{X} \dot{\phi} v(\mu_{\phi}) \operatorname{MA}(\phi)$$

It follows that I_v is $d_{1,v}$ -Lipschitz: given a curve ϕ_t joining ϕ_0 , ϕ_1 in $\mathcal{K}_{\mathbb{T}}$, one has

$$\begin{aligned} |I_{\nu}(\phi_0) - I_{\nu}(\phi_1)| &= \left| \int_0^1 (d_{\phi_t} I_{\nu})(\dot{\phi}_t) \right| \\ &\leq \int_0^1 \left(\int_X \left| \dot{\phi}_t \right| \nu(\mu_{\phi_t}) \operatorname{MA}(\phi_t) \right) \leq \ell_{1,\nu}(\{\phi_t\}_t), \end{aligned}$$

so that in particular

$$|I_{\nu}(\phi_0) - I_{\nu}(\phi_1)| \leq \inf \ell_{1,\nu}(\{\phi_t\}_t) = d_{1,\nu}(\phi_0,\phi_1).$$

It is closely related to the I_{ν} functional defined by its variation:

$$(d_{\phi}l_{\nu})(\dot{\phi}) = \int_{X} \dot{\phi} v(\mu_{\phi}) \operatorname{MA}(\phi).$$

It follows that I_v is $d_{1,v}$ -Lipschitz: given a curve ϕ_t joining ϕ_0 , ϕ_1 in $\mathcal{K}_{\mathbb{T}}$, one has

$$\begin{aligned} |I_{\nu}(\phi_0) - I_{\nu}(\phi_1)| &= \left| \int_0^1 (d_{\phi_t} I_{\nu})(\dot{\phi}_t) \right| \\ &\leq \int_0^1 \left(\int_X \left| \dot{\phi}_t \right| \nu(\mu_{\phi_t}) \operatorname{MA}(\phi_t) \right) \leq \ell_{1,\nu}(\{\phi_t\}_t), \end{aligned}$$

so that in particular

$$|I_{\nu}(\phi_0) - I_{\nu}(\phi_1)| \leq \inf \ell_{1,\nu}(\{\phi_t\}_t) = d_{1,\nu}(\phi_0,\phi_1).$$

By the previous Lemma, this is smaller than a constant times $d_1(\phi_0, \phi_1)$, hence l_v is d_1 -Lipschitz. This allows us to extend it to \mathcal{E}_T^1 . Note that l_v is by definition linear in v, which furthermore allows us to extend it by linearity to nonpositive weights.

Let ρ be an invariant closed (1,1)-form. We again define I_{ν}^{ρ} by its variation

$$(d_{\phi}l_{\mathsf{v}})(\dot{\phi}):=\int_{X}\dot{\phi}(\mathsf{v}(\mu_{\phi})
ho\wedge\omega_{\phi}^{[m-1]}+\langle(d\mathsf{v})(\mu_{\phi}),\mu_{
ho}
angle\omega_{\phi}^{[m]}).$$

Let ρ be an invariant closed (1,1)-form. We again define I_{v}^{ρ} by its variation

$$(d_{\phi}l_{\mathsf{v}})(\dot{\phi}):=\int_{X}\dot{\phi}(\mathsf{v}(\mu_{\phi})
ho\wedge\omega_{\phi}^{[m-1]}+\langle(d\mathsf{v})(\mu_{\phi}),\mu_{
ho}
angle\omega_{\phi}^{[m]}).$$

One has the following:

Proposition

 I_{v}^{ρ} extends to a d_{1} -continuous functional on $\mathcal{E}_{\mathbb{T}}^{1}$, which is bounded on bounded subsets; furthermore this extension is linear and continuous in v (wrt $C^{1}(\Delta)$).

Let ρ be an invariant closed (1,1)-form. We again define I_v^{ρ} by its variation

$$(d_{\phi}l_{\mathsf{v}})(\dot{\phi}):=\int_{X}\dot{\phi}(\mathsf{v}(\mu_{\phi})
ho\wedge\omega_{\phi}^{[m-1]}+\langle(d\mathsf{v})(\mu_{\phi}),\mu_{
ho}
angle\omega_{\phi}^{[m]}).$$

One has the following:

Proposition

 I_v^{ρ} extends to a d_1 -continuous functional on $\mathcal{E}_{\mathbb{T}}^1$, which is bounded on bounded subsets; furthermore this extension is linear and continuous in v (wrt $C^1(\Delta)$).

The proof relies on somewhat tedious computation, based on [BDL]. The key is to obtain an explicit expression for $I_{\nu}^{\rho}(\phi_1) - I_{\nu}^{\rho}(\phi_0)$ (which brings us to the next page...)

$$egin{aligned} &I^{
ho}_{
ho}(\phi_1)-I^{
ho}_{
ho}(\phi_0)\ &=\int_X(\phi_1-\phi_0)\left(\sum_{j=0}^{m-1}\left[\int_0^1s^j(1-s)^{m-1-j}
u(s\mu_1+(1-s)\mu_0)ds
ight]
ho\wedge\omega_1^{[j]}\wedge\omega_0^{[m-j-1]}
ight)\ &+\int_X(\phi_1-\phi_0)\left(\sum_{j=0}^{m-1}\left\langle\int_0^1s^j(1-s)^{m-1-j}(d
u)(s\mu_1+(1-s)\mu_0)ds,\mu_
ho
ight
angle\omega_1^{[j]}\wedge\omega_0^{[m-j]}
ight)\end{aligned}$$

$$egin{split} &I^{
ho}_{
ho}(\phi_1)-I^{
ho}_{
ho}(\phi_0)\ &=\int_X(\phi_1-\phi_0)\left(\sum_{j=0}^{m-1}\left[\int_0^1s^j(1-s)^{m-1-j}
u(s\mu_1+(1-s)\mu_0)ds
ight]
ho\wedge\omega_0^{[j]}\wedge\omega_0^{[m-j-1]}
ight)\ &+\int_X(\phi_1-\phi_0)\left(\sum_{j=0}^{m-1}\left\langle\int_0^1s^j(1-s)^{m-1-j}(d
u)(s\mu_1+(1-s)\mu_0)ds,\mu_
ho
ight
angle\omega_1^{[j]}\wedge\omega_0^{[m-j]}
ight)
ight)$$

For example, for the C^1 -estimate, one uses linearity: $I^{\rho}_{\nu}(\phi) - I^{\rho}_{w}(\phi) = I^{\rho}_{\nu-w}(\phi)$. Then, this formula for $\phi_1 = \phi$, $\phi_0 = 0$ allows us to have an estimate of the form

$$egin{aligned} |I^{
ho}_{\mathbf{v}-\mathbf{w}}(\phi)| &\leq C \|\mathbf{v}-\mathbf{w}\|_{\mathcal{C}^1(\Delta)} \int_X \sum |\phi| \omega_{\phi}^{[J]} \wedge \omega_0^{[m-J]} \ &\leq C' \|\mathbf{v}-\mathbf{w}\|_{\mathcal{C}^1(\Delta)} \int_X |\phi| \omega_{\phi}^{[m]}, \end{aligned}$$

as desired.

• We have extended all components of the Chen-Tian formula to $\mathcal{E}^1_{\mathbb{T}}$, which gives a d_1 -lsc extension of $M_{\nu,w}$ to that space.

• We have extended all components of the Chen-Tian formula to $\mathcal{E}^1_{\mathbb{T}}$, which gives a d_1 -lsc extension of $M_{\nu,w}$ to that space.

• We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}^1_{\mathbb{T}}$, one can find a sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_1 and in weighted entropy to ϕ . On the other hand, I_w and I_v^{ρ} are d_1 -continuous, so that

$$M_{\nu,w}(\phi_j) \rightarrow_{j \rightarrow \infty} M_{\nu,w}(\phi)$$

and the desired statement follows.

• We have extended all components of the Chen-Tian formula to $\mathcal{E}^1_{\mathbb{T}}$, which gives a d_1 -lsc extension of $M_{\nu,w}$ to that space.

• We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}^1_{\mathbb{T}}$, one can find a sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_1 and in weighted entropy to ϕ . On the other hand, I_w and I_v^{ρ} are d_1 -continuous, so that

$$M_{\nu,w}(\phi_j) \rightarrow_{j \rightarrow \infty} M_{\nu,w}(\phi)$$

and the desired statement follows.

• Regarding linearity in v, w: since all the other components are linear, we need only look at the entropy. In fact we will need the additional "constant" term:

$$Ent(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi)) - \int_X \log(\nu(\mu_0))\nu(\mu_0)\omega_0^{[m]} = \int_X \log(\operatorname{MA}(\phi)/\omega_0^m) \operatorname{MA}_{\nu}(\phi),$$

which is linear, as desired!

• We have extended all components of the Chen-Tian formula to $\mathcal{E}^1_{\mathbb{T}}$, which gives a d_1 -lsc extension of $M_{\nu,w}$ to that space.

• We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}^1_{\mathbb{T}}$, one can find a sequence $(\phi_j)_j$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_1 and in weighted entropy to ϕ . On the other hand, I_w and I_v^{ρ} are d_1 -continuous, so that

$$M_{\nu,w}(\phi_j) \rightarrow_{j \rightarrow \infty} M_{\nu,w}(\phi)$$

and the desired statement follows.

• Regarding linearity in v, w: since all the other components are linear, we need only look at the entropy. In fact we will need the additional "constant" term:

$$Ent(\omega_0^{[m]}, \operatorname{MA}_{\nu}(\phi)) - \int_X \log(\nu(\mu_0))\nu(\mu_0)\omega_0^{[m]} = \int_X \log(\operatorname{MA}(\phi)/\omega_0^m) \operatorname{MA}_{\nu}(\phi),$$

which is linear, as desired!

• Regarding geodesics: Lahdili proved that $M_{\nu,w}$ is convex along Mabuchi geodesics in $\mathcal{K}_{\mathbb{T}}$ (closely following Berman-Berndtsson). The general result then follows from entropy approximation.

Fin.