Weighted cscK working group Apr. 152022.

Weighted cscK working group Apr. 152022.

Setup: X compact Kähler manifold, $\operatorname{dim}_{\mathbb{R}} X=2 m$. $\mathbb{T} \subset A u t_{\text {red }}(X)$ compact torus, $\omega_{0} \mathbb{T}$-invariant Kähler metric.
Δ is the image of the moment map $\mu_{0}: X \rightarrow t^{*}$ associated to ω_{0}. We consider weights $v>0, w$ in $C^{\infty}(\Delta)$.

Weighted cscK working group Apr. 152022.

Setup: X compact Kähler manifold, $\operatorname{dim}_{\mathbb{R}} X=2 m$. $\mathbb{T} \subset A u t_{\text {red }}(X)$ compact torus, $\omega_{0} \mathbb{T}$-invariant Kähler metric.
Δ is the image of the moment map $\mu_{0}: X \rightarrow \mathfrak{t}^{*}$ associated to ω_{0}. We consider weights $v>0, w$ in $C^{\infty}(\Delta)$.
$\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$ denotes the space of \mathbb{T}-invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi}:=\omega+d d^{c} \phi$, normalized so that its image is Δ.

Weighted cscK working group Apr. 152022.

Setup: X compact Kähler manifold, $\operatorname{dim}_{\mathbb{R}} X=2 m$. $\mathbb{T} \subset A u t_{\text {red }}(X)$ compact torus, $\omega_{0} \mathbb{T}$-invariant Kähler metric.
Δ is the image of the moment map $\mu_{0}: X \rightarrow \mathfrak{t}^{*}$ associated to ω_{0}. We consider weights $v>0, w$ in $C^{\infty}(\Delta)$.
$\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$ denotes the space of \mathbb{T}-invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi}:=\omega+d d^{c} \phi$, normalized so that its image is Δ. The d_{1}-completion of $\mathcal{K}_{\mathbb{T}}$ is the space

$$
\mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right):=\left\{\phi \in \operatorname{PSH}_{\mathbb{T}}\left(X, \omega_{0}\right), \int_{X}|\phi|\left(\omega_{\phi}\right)^{m}<\infty\right\}
$$

Weighted cscK working group Apr. 152022.

Setup: X compact Kähler manifold, $\operatorname{dim}_{\mathbb{R}} X=2 m$. $\mathbb{T} \subset A u t_{\text {red }}(X)$ compact torus, $\omega_{0} \mathbb{T}$-invariant Kähler metric.
Δ is the image of the moment map $\mu_{0}: X \rightarrow \mathfrak{t}^{*}$ associated to ω_{0}. We consider weights $v>0, w$ in $C^{\infty}(\Delta)$.
$\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$ denotes the space of \mathbb{T}-invariant Kähler potentials. Given $\phi \in \mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$, we write μ_{ϕ} for the moment map associated to $\omega_{\phi}:=\omega+d d^{c} \phi$, normalized so that its image is Δ. The d_{1}-completion of $\mathcal{K}_{\mathbb{T}}$ is the space

$$
\mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right):=\left\{\phi \in \operatorname{PSH}_{\mathbb{T}}\left(X, \omega_{0}\right), \int_{X}|\phi|\left(\omega_{\phi}\right)^{m}<\infty\right\}
$$

Today, we will look into the extension of $\mathrm{M}_{v, w}$ to the space $\mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$.

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{v, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{\mathrm{v}, \mathrm{w}}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}$

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{v, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\text {Ric } \omega_{0}}(\phi)$

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{v, w}$ on $\mathcal{K}_{\mathbb{T}}$:

$$
\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]} .
$$

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{\mathrm{V}, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}$.

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{\mathrm{v}, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}$.

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.
2. I ${ }_{w}$ term: need estimates relating d_{1} and the weighted distance $d_{1, w}$.

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{\mathrm{v}, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}$.

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.
2. I_{w} term: need estimates relating d_{1} and the weighted distance $d_{1, w}$.
3. twisted I term: computation+proof of Berman-Darvas-Lu.

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{v, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}$.

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.
2. I_{w} term: need estimates relating d_{1} and the weighted distance $d_{1, w}$.
3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

Theorem

The Chen-Tian formula gives the largest d_{1}-Isc extension of $\mathrm{M}_{v, w}$ on $\mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$. Furthermore, this extended $\mathrm{M}_{v, w}$ is linear in v, w, uniformly continuous in w wrt $C^{0}(\Delta)$ and continuous in v wrt $C^{1}(\Delta)$

By Lahdili, one has a Chen-Tian-like decomposition of $\mathrm{M}_{v, w}$ on $\mathcal{K}_{\mathbb{T}}$:
$\mathrm{M}_{v, w}(\phi)=\int_{X} \log \left(\frac{v\left(\mu_{\phi}\right) \omega_{\phi}^{m}}{\omega_{0}^{m}}\right) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}+\mathrm{I}_{\omega}(\phi)-2 \mathrm{I}_{v}^{\mathrm{Ric} \omega_{0}}(\phi)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}$.

1. Extend the entropy term. Main idea: in the case of polynomial v, extension of the weighted entropy on X corresponds to extension of the unweighted entropy on an associated fibration.
2. I_{w} term: need estimates relating d_{1} and the weighted distance $d_{1, w}$.
3. twisted I term: computation+proof of Berman-Darvas-Lu.

Precise statement:

Theorem

The Chen-Tian formula gives the largest d_{1}-Isc extension of $\mathrm{M}_{v, w}$ on $\mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$. Furthermore, this extended $\mathrm{M}_{v, w}$ is linear in v, w, uniformly continuous in w wrt $C^{0}(\Delta)$ and continuous in v wrt $C^{1}(\Delta)$, and is convex along weak Mabuchi geodesics.

Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampère operator

$$
\phi \mapsto \mathrm{MA}(\phi)
$$

extends to $\mathcal{E}^{1}\left(X, \omega_{0}\right)$.

Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampère operator

$$
\phi \mapsto \operatorname{MA}(\phi)
$$

extends to $\mathcal{E}^{1}\left(X, \omega_{0}\right)$. The entropy is extended to \mathcal{E}^{1} in a measure-theoretic sense:

$$
\operatorname{Ent}\left(\omega_{0}^{[m]}, \omega_{\phi}^{[m]}\right)=\int_{X} \log \left(\frac{\omega_{\phi}^{[m]}}{\omega_{0}^{[m]}}\right) \omega_{\phi}^{[m]}
$$

(where $\frac{\omega_{\phi}^{m}}{\omega_{0}^{m}}$ is understood as a Radon-Nikodym derivative).

Extension of the entropy part.

The non-weighted case. By BBEGZ, the Monge-Ampère operator

$$
\phi \mapsto \operatorname{MA}(\phi)
$$

extends to $\mathcal{E}^{1}\left(X, \omega_{0}\right)$. The entropy is extended to \mathcal{E}^{1} in a measure-theoretic sense:

$$
\operatorname{Ent}\left(\omega_{0}^{[m]}, \omega_{\phi}^{[m]}\right)=\int_{X} \log \left(\frac{\omega_{\phi}^{[m]}}{\omega_{0}^{[m]}}\right) \omega_{\phi}^{[m]}
$$

(where $\frac{\omega_{\phi}^{m}}{\omega_{0}^{m}}$ is understood as a Radon-Nikodym derivative).
In the weighted case, we need to understand the operator

$$
\operatorname{MA}_{v}(\phi):=v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

on $\mathcal{E}_{\mathbb{T}}^{1}$ in order to define our entropy term $\operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)$.

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto \mathrm{MA}_{v}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}_{\mathbb{T}}^{1}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}_{\mathbb{T}}^{1}$ (wrt the weak topology of measures).

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto \mathrm{MA}_{v}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}_{\mathbb{T}}^{1}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}_{\mathbb{T}}^{1}$ (wrt the weak topology of measures).

First step: the case of polynomial v. We assume that $v>0$ is of the form

$$
v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}} .
$$

We construct an associated semisimple principal fibration $\left(Y, \tilde{\omega}_{\phi}\right)$, which will allow us to compute $\int_{X} f \mathrm{MA}_{v}(\phi)$ for torus-invariant continuous functions f on X (as in Tran-Trung's talk).

Proposition (AJL '21, Han-Li '20)

The operator $\phi \mapsto \mathrm{MA}_{v}(\phi)$ extends to a Radon measure-valued operator on $\mathcal{E}_{\mathbb{T}}^{1}$, which is continuous along pointwise decreasing sequences in $\mathcal{E}_{\mathbb{T}}^{1}$ (wrt the weak topology of measures).

First step: the case of polynomial v. We assume that $v>0$ is of the form

$$
v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}} .
$$

We construct an associated semisimple principal fibration $\left(Y, \tilde{\omega}_{\phi}\right)$, which will allow us to compute $\int_{X} f \mathrm{MA}_{v}(\phi)$ for torus-invariant continuous functions f on X (as in Tran-Trung's talk).Namely, from Simon's talk, we will have that

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} f v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with v_{B} the volume of the base of the fibration.

Recall that $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$.
Define the base of the fibration as $B=B_{1} \times \cdots \times B_{k}$ where $B_{a}=\left(\mathbb{P}^{n_{a}}, \omega_{a}\right)$, with Fubini-Study metrics of scalar curvature $=2 n_{a}\left(n_{a}+1\right)$.

Recall that $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$.
Define the base of the fibration as $B=B_{1} \times \cdots \times B_{k}$ where $B_{a}=\left(\mathbb{P}^{n_{a}}, \omega_{a}\right)$, with Fubini-Study metrics of scalar curvature $=2 n_{a}\left(n_{a}+1\right)$. We pick $\pi_{B}: P \rightarrow B$ a principal \mathbb{T}-bundle with a connection θ whose curvature is

$$
d \theta=\sum_{a=1}^{k}\left(\pi_{B}^{*} \omega_{a}\right) \otimes v_{a}
$$

Recall that $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$.
Define the base of the fibration as $B=B_{1} \times \cdots \times B_{k}$ where $B_{a}=\left(\mathbb{P}^{n_{a}}, \omega_{a}\right)$, with Fubini-Study metrics of scalar curvature $=2 n_{a}\left(n_{a}+1\right)$. We pick $\pi_{B}: P \rightarrow B$ a principal \mathbb{T}-bundle with a connection θ whose curvature is

$$
d \theta=\sum_{a=1}^{k}\left(\pi_{B}^{*} \omega_{a}\right) \otimes v_{a}
$$

We then set $Y=(X \times P) /\left(\mathbb{T}_{X \times P}\right)$, and define

$$
\tilde{\omega}_{0}:=\omega_{0}+\sum_{a=1}^{k}\left(\left\langle v_{a}, \mu_{\omega_{0}}\right\rangle+c_{a}\right) \pi_{B}^{*} \omega_{a}+\left\langle d \mu_{\omega_{0}} \wedge \theta\right\rangle .
$$

It is a 2-form on $X \times P$ which descends to a \mathbb{T}_{Y}-invariant Kähler form $\tilde{\omega}_{0}$ on Y (Tran-Trung's talk again).

Theorem

We have a well-defined embedding ι of the set of ω_{0}-integrable \mathbb{T}-invariant functions on X into the set of $\tilde{\omega}_{0}$-integrable \mathbb{T}_{Y}-invariant functions on Y, sending smooth functions to smooth functions;

Recall that $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$.
Define the base of the fibration as $B=B_{1} \times \cdots \times B_{k}$ where $B_{a}=\left(\mathbb{P}^{n_{a}}, \omega_{a}\right)$, with Fubini-Study metrics of scalar curvature $=2 n_{a}\left(n_{a}+1\right)$. We pick $\pi_{B}: P \rightarrow B$ a principal \mathbb{T}-bundle with a connection θ whose curvature is

$$
d \theta=\sum_{a=1}^{k}\left(\pi_{B}^{*} \omega_{a}\right) \otimes v_{a}
$$

We then set $Y=(X \times P) /\left(\mathbb{T}_{X \times P}\right)$, and define

$$
\tilde{\omega}_{0}:=\omega_{0}+\sum_{a=1}^{k}\left(\left\langle v_{a}, \mu_{\omega_{0}}\right\rangle+c_{a}\right) \pi_{B}^{*} \omega_{a}+\left\langle d \mu_{\omega_{0}} \wedge \theta\right\rangle .
$$

It is a 2-form on $X \times P$ which descends to a \mathbb{T}_{Y}-invariant Kähler form $\tilde{\omega}_{0}$ on Y (Tran-Trung's talk again).

Theorem

We have a well-defined embedding ι of the set of ω_{0}-integrable \mathbb{T}-invariant functions on X into the set of $\tilde{\omega}_{0}$-integrable \mathbb{T}_{Y}-invariant functions on Y, sending smooth functions to smooth functions; it induces an embedding

$$
\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right) \hookrightarrow \mathcal{K}_{\mathbb{T}}\left(Y, \tilde{\omega}_{0}\right), \omega_{\phi} \mapsto \tilde{\omega}_{\iota(\phi)}
$$

such that the form induced by ω_{ϕ} on Y coincides with $\tilde{\omega}_{\iota(\phi)}$. (In particular, d_{1}-isometry.)

Theorem

We have the following integration formula:

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} \iota(f) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with $v_{B}:=\operatorname{vol}\left(B, \omega_{B}\right)$.

Theorem

We have the following integration formula:

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} \iota(f) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with $v_{B}:=\operatorname{vol}\left(B, \omega_{B}\right)$.
Now, pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$, and approximate it by a decreasing sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$.

Theorem

We have the following integration formula:

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} \iota(f) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with $v_{B}:=\operatorname{vol}\left(B, \omega_{B}\right)$.
Now, pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$, and approximate it by a decreasing sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$. Each ϕ_{j} also defines a metric in $\mathcal{K}_{\mathbb{T}}\left(Y, \tilde{\omega}_{0}\right)$, so that by the integration formula, for each $f \in C_{\mathbb{T}}^{0}(X)$,

$$
\int_{Y} f \tilde{\omega}_{\phi_{j}}^{[m+n]}=v_{B}^{-1} \cdot \int_{X} v\left(\mu_{\phi_{j}}\right) f \omega_{\phi_{j}}^{[m]}
$$

Theorem

We have the following integration formula:

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} \iota(f) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with $v_{B}:=\operatorname{vol}\left(B, \omega_{B}\right)$.
Now, pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$, and approximate it by a decreasing sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$. Each ϕ_{j} also defines a metric in $\mathcal{K}_{\mathbb{T}}\left(Y, \tilde{\omega}_{0}\right)$, so that by the integration formula, for each $f \in C_{\mathbb{T}}^{0}(X)$,

$$
\int_{Y} f \tilde{\omega}_{\phi_{j}}^{[m+n]}=v_{B}^{-1} \cdot \int_{X} v\left(\mu_{\phi_{j}}\right) f \omega_{\phi_{j}}^{[m]}
$$

We thus define

$$
\int_{X} f \operatorname{MA}_{v}(\phi):=\lim _{j \rightarrow \infty} \int_{Y} f \tilde{\omega}_{\phi_{j}}^{[m+n]}
$$

Theorem

We have the following integration formula:

$$
\int_{Y} f \tilde{\omega}_{\phi}^{[m+n]}=v_{B}^{-1} \int_{X} \iota(f) v\left(\mu_{\phi}\right) \omega_{\phi}^{[m]}
$$

with $v_{B}:=\operatorname{vol}\left(B, \omega_{B}\right)$.
Now, pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}\left(X, \omega_{0}\right)$, and approximate it by a decreasing sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}\left(X, \omega_{0}\right)$. Each ϕ_{j} also defines a metric in $\mathcal{K}_{\mathbb{T}}\left(Y, \tilde{\omega}_{0}\right)$, so that by the integration formula, for each $f \in C_{\mathbb{T}}^{0}(X)$,

$$
\int_{Y} f \tilde{\omega}_{\phi_{j}}^{[m+n]}=v_{B}^{-1} \cdot \int_{X} v\left(\mu_{\phi_{j}}\right) f \omega_{\phi_{j}}^{[m]}
$$

We thus define

$$
\int_{X} f \mathrm{MA}_{v}(\phi):=\lim _{j \rightarrow \infty} \int_{Y} f \tilde{\omega}_{\phi_{j}}^{[m+n]}
$$

For general $f \in C^{0}(X)$, we define $f^{\mathbb{T}}$ to be the \mathbb{T}-invariant function defined by the average of f over torus orbits, and set

$$
\int_{X} f \mathrm{MA}_{v}(\phi):=\int_{X} f^{\mathbb{T}} \mathrm{MA}_{v}(\phi)
$$

Because $f \mapsto f^{\mathbb{T}}$ is linear, this defines a positive Radon measure by Riesz-Markov-Kakutani.

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$
\left|\int_{X} f \mathrm{MA}_{v_{p}}(\phi)-\int_{X} f \mathrm{MA}_{v_{q}}(\phi)\right| \leq\left\|v_{p}-v_{q}\right\|_{C^{0}(\Delta)} \int_{X}|f| \mathrm{MA}(\phi)
$$

for two such v_{p}, v_{q}.

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$
\left|\int_{X} f \mathrm{MA}_{v_{p}}(\phi)-\int_{X} f \mathrm{MA}_{v_{q}}(\phi)\right| \leq\left\|v_{p}-v_{q}\right\|_{C^{0}(\Delta)} \int_{X}|f| \mathrm{MA}(\phi)
$$

for two such v_{p}, v_{q}. This cone is dense in $C_{>0}^{\infty}(\Delta)$, so that, given an arbitrary $v \in C_{>0}^{\infty}(\Delta)$, which we approximate by a sequence $\left(v_{k}\right)_{k}$ of positive polynomials, we define

$$
\int_{X} f \mathrm{MA}_{v}(\phi):=\lim _{k \rightarrow \infty} \int_{X} f \mathrm{MA}_{v_{k}}(\phi)
$$

The case of non-polynomial v. We first extend the previous definition by linearity on the cone generated by positive linear combinations of polynomials of the above form. Because such polynomials are bounded on Δ one always has

$$
\left|\int_{X} f \mathrm{MA}_{v_{p}}(\phi)-\int_{X} f \mathrm{MA}_{v_{q}}(\phi)\right| \leq\left\|v_{p}-v_{q}\right\|_{C^{0}(\Delta)} \int_{X}|f| \mathrm{MA}(\phi)
$$

for two such v_{p}, v_{q}. This cone is dense in $C_{>0}^{\infty}(\Delta)$, so that, given an arbitrary $v \in C_{>0}^{\infty}(\Delta)$, which we approximate by a sequence $\left(v_{k}\right)_{k}$ of positive polynomials, we define

$$
\int_{X} f \mathrm{MA}_{v}(\phi):=\lim _{k \rightarrow \infty} \int_{X} f \mathrm{MA}_{v_{k}}(\phi)
$$

This again defines a positive Radon measure, and concludes the proof of the extension of MA_{v} (+ a C^{0}-estimate).

Lemma (continuity of MA_{v})
If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

Lemma (continuity of MA_{v})
If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$ and construct a fibration Y as before.

Lemma (continuity of MA_{v})

If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$ and construct a fibration Y as before. Note that even if the ϕ_{j} are in $\mathcal{E}_{\mathbb{T}}^{1}$, we can approximate with smooth $\left(\phi_{j, k}\right)_{k}$ so that for $f \in C_{\mathbb{T}}^{0}(X)$ we have
$\int_{X} f \mathrm{MA}_{v}\left(\phi_{j}\right)=\lim _{k} \int_{X} f \operatorname{MA}_{v}\left(\phi_{j, k}\right)=v_{B}^{-1} \lim _{k} \int_{Y} f \operatorname{MA}\left(\phi_{j, k}\right)=v_{B}^{-1} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right)$.

Lemma (continuity of MA_{v})

If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$ and construct a fibration Y as before. Note that even if the ϕ_{j} are in $\mathcal{E}_{\mathbb{T}}^{1}$, we can approximate with smooth $\left(\phi_{j, k}\right)_{k}$ so that for $f \in C_{\mathbb{T}}^{0}(X)$ we have
$\int_{X} f \mathrm{MA}_{v}\left(\phi_{j}\right)=\lim _{k} \int_{X} f \operatorname{MA}_{v}\left(\phi_{j, k}\right)=v_{B}^{-1} \lim _{k} \int_{Y} f \operatorname{MA}\left(\phi_{j, k}\right)=v_{B}^{-1} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right)$.
Because $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$, due to the embedding Theorem the same holds on Y. Therefore,

$$
\mathrm{MA}^{Y}\left(\phi_{j}\right) \rightarrow_{j} \mathrm{MA}^{Y}(\phi)
$$

Lemma (continuity of MA_{v})

If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$ and construct a fibration Y as before. Note that even if the ϕ_{j} are in $\mathcal{E}_{\mathbb{T}}^{1}$, we can approximate with smooth $\left(\phi_{j, k}\right)_{k}$ so that for $f \in C_{\mathbb{T}}^{0}(X)$ we have
$\int_{X} f \mathrm{MA}_{v}\left(\phi_{j}\right)=\lim _{k} \int_{X} f \operatorname{MA}_{v}\left(\phi_{j, k}\right)=v_{B}^{-1} \lim _{k} \int_{Y} f \operatorname{MA}\left(\phi_{j, k}\right)=v_{B}^{-1} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right)$.
Because $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$, due to the embedding Theorem the same holds on Y. Therefore,

$$
\mathrm{MA}^{Y}\left(\phi_{j}\right) \rightarrow_{j} \mathrm{MA}^{Y}(\phi)
$$

Thus

$$
\begin{aligned}
\lim _{j} \int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right) & =v_{B}^{-1} \lim _{j} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right) \\
& =v_{B}^{-1} \int_{Y} f \operatorname{MA}(\phi) \\
& =\int_{X} f \operatorname{MA}_{v}(\phi)
\end{aligned}
$$

Lemma (continuity of MA_{v})

If $\left(\phi_{j}\right)_{j}$ is a sequence in $\mathcal{E}_{\mathbb{T}}^{1}$ such that $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$ for some $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, then $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow \mathrm{MA}_{v}(\phi)$ weakly.

We again begin with the polynomial case: $v(\mu)=\prod_{a=1}^{k}\left(\left\langle v_{a}, \mu\right\rangle+c_{a}\right)^{n_{a}}$ and construct a fibration Y as before. Note that even if the ϕ_{j} are in $\mathcal{E}_{\mathbb{T}}^{1}$, we can approximate with smooth $\left(\phi_{j, k}\right)_{k}$ so that for $f \in C_{\mathbb{T}}^{0}(X)$ we have
$\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)=\lim _{k} \int_{X} f \operatorname{MA}_{v}\left(\phi_{j, k}\right)=v_{B}^{-1} \lim _{k} \int_{Y} f \operatorname{MA}\left(\phi_{j, k}\right)=v_{B}^{-1} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right)$.
Because $d_{1}\left(\phi_{j}, \phi\right) \rightarrow 0$, due to the embedding Theorem the same holds on Y. Therefore,

$$
\mathrm{MA}^{Y}\left(\phi_{j}\right) \rightarrow_{j} \mathrm{MA}^{Y}(\phi)
$$

Thus

$$
\begin{aligned}
\lim _{j} \int_{X} f \mathrm{MA}_{v}\left(\phi_{j}\right) & =v_{B}^{-1} \lim _{j} \int_{Y} f \operatorname{MA}\left(\phi_{j}\right) \\
& =v_{B}^{-1} \int_{Y} f \operatorname{MA}(\phi) \\
& =\int_{X} f \operatorname{MA}_{v}(\phi)
\end{aligned}
$$

This holds for non-torus-invariant f by considering $f^{\mathbb{T}}$ as before.

For an arbitrary positive weight v, we approximate it by polynomials $\left(v_{i}\right)_{i}$ of the above type in the $C^{0}(\Delta)$-topology.

For an arbitrary positive weight v, we approximate it by polynomials $\left(v_{i}\right)_{i}$ of the above type in the $C^{0}(\Delta)$-topology. For $f \in C^{0}(X)$ we have

$$
\begin{aligned}
& \left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)\right|+\left|\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right| \\
& +\left|\int_{X} f \mathrm{MA}_{v_{i}}(\phi)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \mathrm{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right|+\left\|v_{i}-v\right\|_{C^{0}(\Delta)}\left(\int_{X}|f|\left(\operatorname{MA}\left(\phi_{j}\right)+\operatorname{MA}(\phi)\right)\right) .
\end{aligned}
$$

For an arbitrary positive weight v, we approximate it by polynomials $\left(v_{i}\right)_{i}$ of the above type in the $C^{0}(\Delta)$-topology. For $f \in C^{0}(X)$ we have

$$
\begin{aligned}
& \left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)\right|+\left|\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right| \\
& +\left|\int_{X} f \operatorname{MA}_{v_{i}}(\phi)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right|+\left\|v_{i}-v\right\|_{C^{0}(\Delta)}\left(\int_{X}|f|\left(\operatorname{MA}\left(\phi_{j}\right)+\operatorname{MA}(\phi)\right)\right)
\end{aligned}
$$

We take the limit in j, so that

$$
\lim _{j}\left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \leq 2\left\|v_{i}-v\right\|_{c^{0}(\Delta)}\left(\int_{X}|f| \operatorname{MA}(\phi)\right)
$$

by continuity of the unweighted MA.

For an arbitrary positive weight v, we approximate it by polynomials $\left(v_{i}\right)_{i}$ of the above type in the $C^{0}(\Delta)$-topology. For $f \in C^{0}(X)$ we have

$$
\begin{aligned}
& \left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)\right|+\left|\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right| \\
& +\left|\int_{X} f \operatorname{MA}_{v_{i}}(\phi)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \\
& \leq\left|\int_{X} f \operatorname{MA}_{v_{i}}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v_{i}}(\phi)\right|+\left\|v_{i}-v\right\|_{C^{0}(\Delta)}\left(\int_{X}|f|\left(\operatorname{MA}\left(\phi_{j}\right)+\operatorname{MA}(\phi)\right)\right)
\end{aligned}
$$

We take the limit in j, so that

$$
\lim _{j}\left|\int_{X} f \operatorname{MA}_{v}\left(\phi_{j}\right)-\int_{X} f \operatorname{MA}_{v}(\phi)\right| \leq 2\left\|v_{i}-v\right\|_{C^{0}(\Delta)}\left(\int_{X}|f| \operatorname{MA}(\phi)\right)
$$

by continuity of the unweighted MA. Then this limit is shown to be zero by taking $i \rightarrow \infty$, which implies that $\mathrm{MA}_{v}\left(\phi_{j}\right) \rightarrow_{j} \operatorname{MA}_{v}(\phi)$. This concludes the proof of the Lemma.

Lemma (entropy approximation)

- The mapping $\phi \mapsto \operatorname{Ent}\left(\omega_{0}^{[m]}, \operatorname{MA}_{v}(\phi)\right)$ is d_{1}-Isc.

Lemma (entropy approximation)

- The mapping $\phi \mapsto \operatorname{Ent}\left(\omega_{0}^{[m]}, \operatorname{MA}_{v}(\phi)\right)$ is d_{1}-lsc.
- Given any $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, there exists a sequence $\phi_{j} \in \mathcal{K}_{\mathbb{T}}$ converging in d_{1}-distance and in entropy to ϕ.

Lemma (entropy approximation)

- The mapping $\phi \mapsto \operatorname{Ent}\left(\omega_{0}^{[m]}, \operatorname{MA}_{v}(\phi)\right)$ is d_{1}-Isc.
- Given any $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, there exists a sequence $\phi_{j} \in \mathcal{K}_{\mathbb{T}}$ converging in d_{1}-distance and in entropy to ϕ.

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \operatorname{Ent}(\mu, \nu)$ is Isc on the space of finite measures absolutely cts with respect to μ (wrt weak topology).

Lemma (entropy approximation)

- The mapping $\phi \mapsto \operatorname{Ent}\left(\omega_{0}^{[m]}, \operatorname{MA}_{v}(\phi)\right)$ is d_{1}-Isc.
- Given any $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, there exists a sequence $\phi_{j} \in \mathcal{K}_{\mathbb{T}}$ converging in d_{1}-distance and in entropy to ϕ.

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \operatorname{Ent}(\mu, \nu)$ is Isc on the space of finite measures absolutely cts with respect to μ (wrt weak topology). One can indeed see that

$$
\operatorname{Ent}(\mu, \nu)=\sup _{f \in C^{0}(X)}\left(\int_{X} f d \nu-\log \int_{X} e^{f} d \mu\right) .
$$

Because for fixed $f, \nu \mapsto \int_{X} f d \nu$ is continuous, the entropy is thus a supremum of a family of continuous functions, i.e. Isc.

Lemma (entropy approximation)

- The mapping $\phi \mapsto \operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)$ is d_{1}-lsc.
- Given any $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, there exists a sequence $\phi_{j} \in \mathcal{K}_{\mathbb{T}}$ converging in d_{1}-distance and in entropy to ϕ.

Lower-semicontinuity: as a more general statement, if μ is a finite measure, then $\nu \mapsto \operatorname{Ent}(\mu, \nu)$ is Isc on the space of finite measures absolutely cts with respect to μ (wrt weak topology). One can indeed see that

$$
\operatorname{Ent}(\mu, \nu)=\sup _{f \in C^{0}(X)}\left(\int_{X} f d \nu-\log \int_{X} e^{f} d \mu\right)
$$

Because for fixed $f, \nu \mapsto \int_{X} f d \nu$ is continuous, the entropy is thus a supremum of a family of continuous functions, i.e. Isc. Now, by the previous Lemma, MA ${ }_{v}$ is d_{1}-continuous, so that the entropy is d_{1}-Isc.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, and set $g:=\operatorname{MA}_{v}(\phi) / \omega_{0}^{[m]}$.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, and set

$g:=\mathrm{MA}_{v}(\phi) / \omega_{0}^{[m]}$. By [BDL], we can L^{1}-approximate g via positive functions $g_{j} \in C_{\mathbb{T}}^{\infty}(X)$ such that

$$
\int_{X} g_{j} \log g_{j} \omega_{0}^{[m]} \rightarrow_{j \rightarrow \infty} \operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right) .
$$

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, and set
$g:=\mathrm{MA}_{v}(\phi) / \omega_{0}^{[m]}$. By [BDL], we can L^{1}-approximate g via positive functions $g_{j} \in C_{\mathbb{T}}^{\infty}(X)$ such that

$$
\int_{X} g_{j} \log g_{j} \omega_{0}^{[m]} \rightarrow_{j \rightarrow \infty} \operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)
$$

We then solve the weighted MA equation (Han-Li):

$$
\operatorname{MA}_{v}\left(\phi_{j}\right)=\left(\frac{\int_{X} v\left(\mu_{0}\right) \omega_{0}^{[m]}}{\int_{X} g_{j} \omega_{0}^{[m]}} g_{j} \omega_{0}^{[m]}\right)
$$

yielding a solution $\phi_{j} \in C_{\mathbb{T}}^{\infty}(X)$.

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, and set $g:=\mathrm{MA}_{v}(\phi) / \omega_{0}^{[m]}$. By [BDL], we can L^{1}-approximate g via positive functions $g_{j} \in C_{\mathbb{T}}^{\infty}(X)$ such that

$$
\int_{X} g_{j} \log g_{j} \omega_{0}^{[m]} \rightarrow_{j \rightarrow \infty} \operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)
$$

We then solve the weighted MA equation (Han-Li):

$$
\operatorname{MA}_{v}\left(\phi_{j}\right)=\left(\frac{\int_{X} v\left(\mu_{0}\right) \omega_{0}^{[m]}}{\int_{X} g_{j} \omega_{0}^{[m]}} g_{j} \omega_{0}^{[m]}\right)
$$

yielding a solution $\phi_{j} \in C_{\mathbb{T}}^{\infty}(X)$. Because the sublevel sets of the weighted entropy are d_{1}-compact (Han-Li again), up to a subsequence the ϕ_{j} d_{1}-converge to some $\psi \in \mathcal{E}_{\mathbb{T}}^{1}$. Thus, by the previous Lemma

$$
\mathrm{MA}_{v}(\psi)=\lim _{j} \mathrm{MA}_{v}\left(\phi_{j}\right)
$$

On the other hand, by the MA_{v} equation above and L^{1}-convergence of g_{j} to g we have that

$$
\operatorname{MA}_{v}(\phi)=\lim _{j} \operatorname{MA}_{v}\left(\phi_{j}\right)
$$

Entropy approximation (sketch of proof): pick $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, and set $g:=\mathrm{MA}_{v}(\phi) / \omega_{0}^{[m]}$. By [BDL], we can L^{1}-approximate g via positive functions $g_{j} \in C_{\mathbb{T}}^{\infty}(X)$ such that

$$
\int_{X} g_{j} \log g_{j} \omega_{0}^{[m]} \rightarrow_{j \rightarrow \infty} \operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)
$$

We then solve the weighted MA equation (Han-Li):

$$
\operatorname{MA}_{v}\left(\phi_{j}\right)=\left(\frac{\int_{X} v\left(\mu_{0}\right) \omega_{0}^{[m]}}{\int_{X} g_{j} \omega_{0}^{[m]}} g_{j} \omega_{0}^{[m]}\right)
$$

yielding a solution $\phi_{j} \in C_{\mathbb{T}}^{\infty}(X)$. Because the sublevel sets of the weighted entropy are d_{1}-compact (Han-Li again), up to a subsequence the ϕ_{j} d_{1}-converge to some $\psi \in \mathcal{E}_{\mathbb{T}}^{1}$. Thus, by the previous Lemma

$$
\mathrm{MA}_{v}(\psi)=\lim _{j} \mathrm{MA}_{v}\left(\phi_{j}\right)
$$

On the other hand, by the MA_{v} equation above and L^{1}-convergence of g_{j} to g we have that

$$
\operatorname{MA}_{v}(\phi)=\lim _{j} \operatorname{MA}_{v}\left(\phi_{j}\right)
$$

Thus $u=\phi+c$ for some constant, so that up to substracting constants u_{j} is the desired sequence.

The I_{V} functional and the weighted d_{1}-distance.

We define the weighted length of a smooth curve $t \mapsto \phi_{t} \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$
\ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)=\int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) d t
$$

The I_{V} functional and the weighted d_{1}-distance.

We define the weighted length of a smooth curve $t \mapsto \phi_{t} \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$
\ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)=\int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) d t
$$

We then set

$$
d_{1, v}\left(\phi_{0}, \phi_{1}\right)=\inf _{t \rightarrow \phi_{t}} \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)
$$

among all smooth curves joining ϕ_{0} and ϕ_{1} in $\mathcal{K}_{\mathbb{T}}$.

We define the weighted length of a smooth curve $t \mapsto \phi_{t} \in \mathcal{K}_{\mathbb{T}}$: for $v \in C^{\infty}(\Delta)_{>0}$,

$$
\ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)=\int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) d t
$$

We then set

$$
d_{1, v}\left(\phi_{0}, \phi_{1}\right)=\inf _{t \rightarrow \phi_{t}} \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)
$$

among all smooth curves joining ϕ_{0} and ϕ_{1} in $\mathcal{K}_{\mathbb{T}}$. It is a distance, and in fact equivalent to the d_{1}-distance:

Lemma

If $v>0$ there exists $C>0$ such that for all $\phi_{0}, \phi_{1} \in \mathcal{K}_{\mathbb{T}}$:

$$
C^{-1} d_{1}\left(\phi_{0}, \phi_{1}\right) \leq d_{1, v}\left(\phi_{0}, \phi_{1}\right) \leq C d_{1}\left(\phi_{0}, \phi_{1}\right)
$$

(This is due to the fact that v is bounded on Δ.)

It is closely related to the I_{v} functional defined by its variation:

$$
\left(d_{\phi} I_{v}\right)(\dot{\phi})=\int_{X} \dot{\phi} v\left(\mu_{\phi}\right) \mathrm{MA}(\phi) .
$$

It is closely related to the I_{v} functional defined by its variation:

$$
\left(d_{\phi} I_{v}\right)(\dot{\phi})=\int_{X} \dot{\phi} v\left(\mu_{\phi}\right) \mathrm{MA}(\phi)
$$

It follows that I_{v} is $d_{1, v}$-Lipschitz: given a curve ϕ_{t} joining ϕ_{0}, ϕ_{1} in $\mathcal{K}_{\mathbb{T}}$, one has

$$
\begin{aligned}
\left|I_{v}\left(\phi_{0}\right)-I_{v}\left(\phi_{1}\right)\right| & =\left|\int_{0}^{1}\left(d_{\phi_{t}} I_{v}\right)\left(\dot{\phi}_{t}\right)\right| \\
& \leq \int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) \leq \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)
\end{aligned}
$$

It is closely related to the I_{V} functional defined by its variation:

$$
\left(d_{\phi} I_{v}\right)(\dot{\phi})=\int_{X} \dot{\phi} v\left(\mu_{\phi}\right) \operatorname{MA}(\phi)
$$

It follows that I_{v} is $d_{1, v}$-Lipschitz: given a curve ϕ_{t} joining ϕ_{0}, ϕ_{1} in $\mathcal{K}_{\mathbb{T}}$, one has

$$
\begin{aligned}
\left|I_{v}\left(\phi_{0}\right)-I_{v}\left(\phi_{1}\right)\right| & =\left|\int_{0}^{1}\left(d_{\phi_{t}} I_{v}\right)\left(\dot{\phi}_{t}\right)\right| \\
& \leq \int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) \leq \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)
\end{aligned}
$$

so that in particular

$$
\left|I_{v}\left(\phi_{0}\right)-I_{v}\left(\phi_{1}\right)\right| \leq \inf \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)=d_{1, v}\left(\phi_{0}, \phi_{1}\right) .
$$

It is closely related to the I_{V} functional defined by its variation:

$$
\left(d_{\phi} I_{v}\right)(\dot{\phi})=\int_{X} \dot{\phi} v\left(\mu_{\phi}\right) \mathrm{MA}(\phi)
$$

It follows that I_{v} is $d_{1, v}$-Lipschitz: given a curve ϕ_{t} joining ϕ_{0}, ϕ_{1} in $\mathcal{K}_{\mathbb{T}}$, one has

$$
\begin{aligned}
\left|I_{v}\left(\phi_{0}\right)-I_{v}\left(\phi_{1}\right)\right| & =\left|\int_{0}^{1}\left(d_{\phi_{t}} I_{v}\right)\left(\dot{\phi}_{t}\right)\right| \\
& \leq \int_{0}^{1}\left(\int_{X}\left|\dot{\phi}_{t}\right| v\left(\mu_{\phi_{t}}\right) \operatorname{MA}\left(\phi_{t}\right)\right) \leq \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right),
\end{aligned}
$$

so that in particular

$$
\left|I_{v}\left(\phi_{0}\right)-I_{v}\left(\phi_{1}\right)\right| \leq \inf \ell_{1, v}\left(\left\{\phi_{t}\right\}_{t}\right)=d_{1, v}\left(\phi_{0}, \phi_{1}\right)
$$

By the previous Lemma, this is smaller than a constant times $d_{1}\left(\phi_{0}, \phi_{1}\right)$, hence I_{v} is d_{1}-Lipschitz. This allows us to extend it to $\mathcal{E}_{\mathbb{T}}^{1}$. Note that I_{v} is by definition linear in v, which furthermore allows us to extend it by linearity to nonpositive weights.

A few words on I_{v}^{ρ}.

Let ρ be an invariant closed (1,1)-form. We again define I_{v}^{ρ} by its variation

$$
\left(d_{\phi} l_{v}\right)(\dot{\phi}):=\int_{X} \dot{\phi}\left(v\left(\mu_{\phi}\right) \rho \wedge \omega_{\phi}^{[m-1]}+\left\langle(d v)\left(\mu_{\phi}\right), \mu_{\rho}\right\rangle \omega_{\phi}^{[m]}\right) .
$$

A few words on I_{v}^{ρ}.

Let ρ be an invariant closed (1,1)-form. We again define I_{v}^{ρ} by its variation

$$
\left(d_{\phi} l_{v}\right)(\dot{\phi}):=\int_{X} \dot{\phi}\left(v\left(\mu_{\phi}\right) \rho \wedge \omega_{\phi}^{[m-1]}+\left\langle(d v)\left(\mu_{\phi}\right), \mu_{\rho}\right\rangle \omega_{\phi}^{[m]}\right) .
$$

One has the following:

Proposition

l_{v}^{ρ} extends to a d_{1}-continuous functional on $\mathcal{E}_{\mathbb{T}}^{1}$, which is bounded on bounded subsets; furthermore this extension is linear and continuous in $v\left(\right.$ wrt $\left.C^{1}(\Delta)\right)$.

A few words on I_{v}^{ρ}.

Let ρ be an invariant closed (1,1)-form. We again define I_{v}^{ρ} by its variation

$$
\left(d_{\phi} l_{v}\right)(\dot{\phi}):=\int_{X} \dot{\phi}\left(v\left(\mu_{\phi}\right) \rho \wedge \omega_{\phi}^{[m-1]}+\left\langle(d v)\left(\mu_{\phi}\right), \mu_{\rho}\right\rangle \omega_{\phi}^{[m]}\right) .
$$

One has the following:

Proposition

l_{v}^{ρ} extends to a d_{1}-continuous functional on $\mathcal{E}_{\mathbb{T}}^{1}$, which is bounded on bounded subsets; furthermore this extension is linear and continuous in $v\left(\right.$ wrt $\left.C^{1}(\Delta)\right)$.

The proof relies on somewhat tedious computation, based on [BDL]. The key is to obtain an explicit expression for $I_{v}^{\rho}\left(\phi_{1}\right)-I_{v}^{\rho}\left(\phi_{0}\right)$ (which brings us to the next page...)

$$
\begin{aligned}
& I_{v}^{\rho}\left(\phi_{1}\right)-I_{v}^{\rho}\left(\phi_{0}\right) \\
& =\int_{X}\left(\phi_{1}-\phi_{0}\right)\left(\sum_{j=0}^{m-1}\left[\int_{0}^{1} s^{j}(1-s)^{m-1-j} v\left(s \mu_{1}+(1-s) \mu_{0}\right) d s\right] \rho \wedge \omega_{1}^{[j]} \wedge \omega_{0}^{[m-j-1]}\right) \\
& +\int_{X}\left(\phi_{1}-\phi_{0}\right)\left(\sum_{j=0}^{m-1}\left\langle\int_{0}^{1} s^{j}(1-s)^{m-1-j}(d v)\left(s \mu_{1}+(1-s) \mu_{0}\right) d s, \mu_{\rho}\right\rangle \omega_{1}^{[j]} \wedge \omega_{0}^{[m-j]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{v}^{\rho}\left(\phi_{1}\right)-I_{v}^{\rho}\left(\phi_{0}\right) \\
& =\int_{X}\left(\phi_{1}-\phi_{0}\right)\left(\sum_{j=0}^{m-1}\left[\int_{0}^{1} s^{j}(1-s)^{m-1-j} v\left(s \mu_{1}+(1-s) \mu_{0}\right) d s\right] \rho \wedge \omega_{1}^{[]} \wedge \omega_{0}^{[m-j-1]}\right) \\
& +\int_{X}\left(\phi_{1}-\phi_{0}\right)\left(\sum_{j=0}^{m-1}\left\langle\int_{0}^{1} s^{j}(1-s)^{m-1-j}(d v)\left(s \mu_{1}+(1-s) \mu_{0}\right) d s, \mu_{\rho}\right\rangle \omega_{1}^{[j]} \wedge \omega_{0}^{[m-j]}\right)
\end{aligned}
$$

For example, for the C^{1}-estimate, one uses linearity: $I_{v}^{\rho}(\phi)-I_{w}^{\rho}(\phi)=I_{v-w}^{\rho}(\phi)$. Then, this formula for $\phi_{1}=\phi, \phi_{0}=0$ allows us to have an estimate of the form

$$
\begin{aligned}
\left|\left.\right|_{v-w} ^{\rho}(\phi)\right| & \leq C\|v-w\|_{C^{1}(\Delta)} \int_{x} \sum|\phi| \omega_{\phi}^{[j]} \wedge \omega_{0}^{[m-j]} \\
& \leq C^{\prime}\|v-w\|_{C^{1}(\Delta)} \int_{X}|\phi| \omega_{\phi}^{[m]}
\end{aligned}
$$

as desired.

Conclusion

- We have extended all components of the Chen-Tian formula to $\mathcal{E}_{\mathbb{T}}^{1}$, which gives a d_{1}-Isc extension of $\mathrm{M}_{v, w}$ to that space.

Conclusion

- We have extended all components of the Chen-Tian formula to $\mathcal{E}_{\mathbb{T}}^{1}$, which gives a d_{1}-Isc extension of $\mathrm{M}_{\mathrm{v}, w}$ to that space.
- We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, one can find a sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_{1} and in weighted entropy to ϕ. On the other hand, I_{w} and I_{v}^{ρ} are d_{1}-continuous, so that

$$
\mathrm{M}_{v, w}\left(\phi_{j}\right) \rightarrow_{j \rightarrow \infty} \mathrm{M}_{v, w}(\phi)
$$

and the desired statement follows.

Conclusion

- We have extended all components of the Chen-Tian formula to $\mathcal{E}_{\mathbb{T}}^{1}$, which gives a d_{1}-Isc extension of $\mathrm{M}_{v, w}$ to that space.
- We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, one can find a sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_{1} and in weighted entropy to ϕ. On the other hand, I_{w} and I_{v}^{ρ} are d_{1}-continuous, so that

$$
\mathrm{M}_{\mathrm{v}, w}\left(\phi_{j}\right) \rightarrow_{j \rightarrow \infty} \mathrm{M}_{v, w}(\phi)
$$

and the desired statement follows.

- Regarding linearity in v, w : since all the other components are linear, we need only look at the entropy. In fact we will need the additional "constant" term:

$$
\operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}=\int_{X} \log \left(\mathrm{MA}(\phi) / \omega_{0}^{m}\right) \mathrm{MA}_{v}(\phi)
$$

which is linear, as desired!

Conclusion

- We have extended all components of the Chen-Tian formula to $\mathcal{E}_{\mathbb{T}}^{1}$, which gives a d_{1}-Isc extension of $\mathrm{M}_{v, w}$ to that space.
- We have to show that it is the largest such extension. By the entropy approximation Lemma, given $\phi \in \mathcal{E}_{\mathbb{T}}^{1}$, one can find a sequence $\left(\phi_{j}\right)_{j}$ in $\mathcal{K}_{\mathbb{T}}$ conveging in d_{1} and in weighted entropy to ϕ. On the other hand, I_{w} and I_{v}^{ρ} are d_{1}-continuous, so that

$$
\mathrm{M}_{v, w}\left(\phi_{j}\right) \rightarrow_{j \rightarrow \infty} \mathrm{M}_{v, w}(\phi)
$$

and the desired statement follows.

- Regarding linearity in v, w : since all the other components are linear, we need only look at the entropy. In fact we will need the additional "constant" term:

$$
\operatorname{Ent}\left(\omega_{0}^{[m]}, \mathrm{MA}_{v}(\phi)\right)-\int_{X} \log \left(v\left(\mu_{0}\right)\right) v\left(\mu_{0}\right) \omega_{0}^{[m]}=\int_{X} \log \left(\mathrm{MA}(\phi) / \omega_{0}^{m}\right) \mathrm{MA}_{v}(\phi)
$$

which is linear, as desired!

- Regarding geodesics: Lahdili proved that $\mathrm{M}_{\mathrm{v}, \mathrm{w}}$ is convex along Mabuchi geodesics in $\mathcal{K}_{\mathbb{T}}$ (closely following Berman-Berndtsson). The general result then follows from entropy approximation.

Fin.

