Weighted cscK metrics

Hoang-Chinh Lu
Institut de Mathématique d'Orsay

April 8, 2022

Delcroix's Reading group

Constant scalar curvature Kähler metrics

Normalize ω by $\int_{X} \omega^{n}=1$.

- The scalar curvature of ω is a smooth real function

$$
S(\omega):=n \frac{\operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^{n}}
$$

- ω is a cscK metric if

$$
S(\omega)=\bar{S}=n \int_{X} c_{1}(X) \wedge[\omega]^{n-1}
$$

- Mabuchi: \exists a functional on \mathcal{H} having cscK metrics as crit. points

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{M}(u+t \psi)=\frac{1}{\operatorname{vol}(\omega)} \int_{X} \psi\left(\bar{S}-S\left(\omega_{u}\right) \omega_{u}^{n}\right.
$$

Mabuchi K-energy

The explicit formula was found by Chen, Tian

$$
\begin{gathered}
\mathcal{M}(u)=\bar{S} I(u)-n I^{\operatorname{Ric}(\omega)}(u)+\operatorname{Ent}\left(\omega^{n}, \omega_{u}^{n}\right), \\
\mathrm{I}(u)=\frac{1}{(n+1)} \sum_{k=0}^{n} \int_{X} u \omega_{u}^{k} \wedge \omega^{n-k}, \\
\operatorname{Ent}\left(\omega^{n}, \omega_{u}^{n}\right)=\int_{X} \log \left(\frac{\omega_{u}^{n}}{\omega^{n}}\right) \omega_{u}^{n} .
\end{gathered}
$$

For a real $(1,1)$-form ρ the contracted energy I^{ρ} is defined by

$$
\mathrm{I}^{\rho}(u)=\frac{1}{n} \sum_{k=0}^{n-1} \int_{X} u \rho \wedge \omega_{u}^{k} \wedge \omega^{n-k-1}
$$

Regularity of minimizers of \mathcal{M}

Goal of today is to prove
Theorem 1
Assume ω is cscK, u is a \mathcal{E}^{1} minimizer of \mathcal{M}. Then u is smooth.

Monge-Ampère energy

We have

$$
\begin{gathered}
\mathrm{I}(u)-\mathrm{I}(v)=\frac{1}{n+1} \sum_{k=0}^{n} \int_{X}(u-v) \omega_{u}^{k} \wedge \omega_{v}^{n-k}, \\
\int_{X}(u-v) \omega_{u}^{n} \leq \int_{X}(u-v) \omega_{u}^{k} \wedge \omega_{v}^{n-k} \leq \int_{X}(u-v) \omega_{v}^{n}, \\
\int_{X}(u-v) \omega_{u}^{n} \leq \mathrm{I}(u)-\mathrm{I}(v) \leq \int_{X}(u-v) \omega_{v}^{n} .
\end{gathered}
$$

If $\rho \geq 0$ and ρ is closed, then

$$
\int_{X}(u-v) \rho \wedge \omega_{u}^{n-1} \leq \mathrm{I}^{\rho}(u)-\mathrm{I}^{\rho}(v) \leq \int_{X}(u-v) \rho \wedge \omega_{v}^{n-1} .
$$

The Aubin \mathcal{I} functional

Always normalize potentials by $\mathrm{I}=0$. The Aubin \mathcal{I} functional is defined by

$$
\mathcal{I}(u, v):=\int_{X}(u-v)\left(\omega_{v}^{n}-\omega_{u}^{n}\right) \geq 0 .
$$

It is non degenerate: $\mathcal{I}(u, v)=0$ implies $u=v$.
Strong topology: $\mathcal{I}\left(u_{j}, u\right) \rightarrow 0$ is equivalent to $d_{1}\left(u_{j}, u\right) \rightarrow 0$. It satisfies a quasi-triangle inequality (BBEGZ):

$$
\mathcal{I}(u, v) \leq C(\mathcal{I}(u, w)+\mathcal{I}(w, v))
$$

The Aubin \mathcal{I} functional

Lemma 1

$$
\frac{1}{n(n+1)} \mathcal{I}(u, v) \leq \mathrm{I}^{\omega_{u}}(v)-\mathrm{I}^{\omega_{u}}(u) \leq \frac{1}{n} \mathcal{I}(u, v)
$$

Proof.
Recalling $\mathrm{I}(u)=\mathrm{I}(v)=0$, we have

$$
\begin{aligned}
\mathrm{I}^{\omega_{u}}(v)-\mathrm{I}^{\omega_{u}}(u) & =\frac{1}{n} \sum_{k=0}^{n-1} \int_{X}(v-u) \omega_{v}^{k} \wedge \omega_{u}^{n-k-1} \wedge \omega_{u} \\
& =-\frac{1}{n} \int_{X}(v-u) \omega_{v}^{n} .
\end{aligned}
$$

The Aubin \mathcal{I} functional

Also have

$$
\int_{X}(v-u) \omega_{v}^{n} \leq 0 \leq \int_{X}(v-u) \omega_{u}^{n}
$$

It follows that

$$
-\int_{X}(v-u) \omega_{v}^{n} \leq \int_{X}(v-u)\left(\omega_{u}^{n}-\omega_{v}^{n}\right)
$$

Since $\int_{X}(v-u) \omega_{u}^{k} \wedge \omega_{v}^{n-k} \geq \int_{X}(v-u) \omega_{v}^{n}$, we also have

$$
\int_{X}(v-u) \omega_{u}^{n}+n \int_{X}(v-u) \omega_{v}^{n} \leq 0
$$

From this we get

$$
-\int_{X}(v-u) \omega_{v}^{n} \geq \frac{1}{n+1} \int_{X}(v-u)\left(\omega_{u}^{n}-\omega_{v}^{n}\right)
$$

Convexity of I^{ρ}

Let u_{t} be a geodesic segment connecting u_{0}, u_{1} in \mathcal{H}, the space of Kähler potentials of ω. By differentiating twice we see that

- $t \mapsto \mathrm{I}\left(u_{t}\right)$ is affine
- $t \mapsto \mathrm{I}^{\rho}\left(u_{t}\right)$ is convex if $\rho \geq 0$ is semi-positive

Lemma 2

Assume ρ is Kähler and u_{t} is a geodesic segment in \mathcal{E}^{1} such that $\omega_{u_{t}}^{n}$ is absolutely continuous with respect to ω^{n}. If $\mathrm{I}^{\rho}\left(u_{t}\right)$ is affine in t then $u_{0}=u_{1}$.

Strict convexity of I^{ρ}

For a Kähler form $\beta \leq \rho, \mathrm{I}^{\beta}$ is also affine along u_{t}. By approximation, for any $\psi \in \mathcal{E}^{1}$, $\mathrm{I}^{\omega_{\psi}}$ is also affine along u_{t}. We have, for a.e. $s \in[0,1]$.

$$
0=\mathrm{I}\left(u_{1}\right)-\mathrm{I}\left(u_{0}\right)=\int_{X} \dot{u}_{s}^{-} \omega_{u_{s}}^{n}=\int_{X} \dot{u}_{s}^{+} \omega_{u_{s}}^{n} .
$$

Strict convexity of I^{ρ}

Fix such s. By convexity of $\mathrm{I}^{\omega_{u_{s}}}$, we have

$$
-\frac{1}{n} \frac{u_{s+h}-u_{s}}{h} \omega_{u_{s+h}}^{n}=\frac{\mathrm{I}^{\omega_{u_{s}}}\left(u_{s+h}\right)-\mathrm{I}^{\omega_{u_{s}}}\left(u_{s}\right)}{h} \leq \frac{u_{s+h}-u_{s}}{h} \omega_{u_{s}}^{n},
$$

and

$$
\int_{X} \frac{u_{s+h}-u_{s}}{h} \omega_{u_{s+h}}^{n} \leq \int_{X} \frac{u_{s+h}-u_{s}}{h} \omega_{u_{s}}^{n} .
$$

Letting $h \rightarrow+\infty$ we see that I^{ρ} is constant along u_{t}.

Strict convexity of I^{ρ}

We then have

$$
\begin{gathered}
0=(n+1)\left(\mathrm{I}\left(u_{1}\right)-\mathrm{I}\left(u_{s}\right)\right)-n\left(\mathrm{I}^{\omega_{u_{s}}}\left(u_{1}\right)-\mathrm{I}^{\omega_{u_{s}}}\left(u_{s}\right)\right) \\
=\sum_{k=0}^{n} \int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{k} \wedge \omega_{u_{s}}^{n-k}-\sum_{k=0}^{n-1} \int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{k} \wedge \omega_{u_{s}}^{n-k-1} \wedge \omega_{u_{s}} \\
=\int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{n} .
\end{gathered}
$$

Strict convexity of I^{ρ}

Since

$$
\int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{n} \leq \int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{k} \wedge \omega_{u_{s}}^{n-k} \leq \int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{s}}^{n},
$$

we infer by summing up these $(n+1)$ terms that

$$
\int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{1}}^{n}=\int_{X}\left(u_{1}-u_{s}\right) \omega_{u_{s}}^{n}=0
$$

hence $\mathcal{I}\left(u_{s}, u_{1}\right)=0$, which finally gives $u_{s}=u_{1}$.

Minimizer of I^{ρ} over \mathcal{M}^{1}

Recall that ω is cscK. Let G denote the identity component of the automorphism group of X.
Let \mathcal{M}^{1} denote the set of all \mathcal{E}^{1} minimizers φ of \mathcal{M}, normalized by $\mathrm{I}(\varphi)=0$.
Lemma 3
If u is a smooth Kähler potential of ω, then there is a unique $\varphi_{u} \in \mathcal{M}^{1}$, minimizer of $\mathrm{I}^{\omega_{u}}$ over \mathcal{M}^{1} along with the following estimate

$$
\mathcal{I}\left(\varphi_{u}, u\right) \leq n(n+1) \mathcal{I}(u, v), v \in \mathcal{M}^{1}
$$

Minimizer of I^{ρ} over \mathcal{M}^{1}

For each $\lambda>0$, let φ_{λ} be the unique \mathcal{E}^{1} minimizer of $\mathcal{M}+\lambda I^{\omega_{u}}$.
Fixing a \mathcal{E}^{1}-minimizer v of \mathcal{M},

$$
\mathcal{M}\left(\varphi_{\lambda}\right)+\lambda I^{\omega_{u}}\left(\varphi_{\lambda}\right) \leq \mathcal{M}(v)+\lambda I^{\omega_{u}}(v) \leq \mathcal{M}\left(\varphi_{\lambda}\right)+\lambda I^{\omega_{u}}(v)
$$

Hence $\mathrm{I}^{\omega_{u}}\left(\varphi_{\lambda}\right) \leq \mathrm{I}^{\omega_{u}}(v)$. Subtracting by $\mathrm{I}^{\omega_{u}}(u)$ and using Lemma 1 we obtain

$$
\mathcal{I}\left(\varphi_{\lambda}, u\right) \leq(n+1) \mathcal{I}(u, v)
$$

As $\lambda \rightarrow 0^{+}$we have $\varphi_{\lambda} \rightarrow \varphi_{u} \in \mathcal{M}^{1}$ with

$$
\mathcal{I}\left(\varphi_{u}, u\right) \leq(n+1) \mathcal{I}(u, v)
$$

Regularity of minimizers of $\mathrm{I}^{\omega_{u}}$

Theorem 2
If $\varphi_{0} \in \mathcal{M}^{1}$ minimizes $I^{\omega_{u}}$ over \mathcal{M}^{1}, then $\varphi_{0}=g .0$, for some $g \in G$.

Proof.
Recall that the unique minimizer φ_{λ} of $\mathcal{M}+\lambda I^{\omega_{\mu}}$ converges to φ_{0}. Let $g \in G$ be such that $I^{\omega_{u}}(g .0)=\min _{f \in G} I^{\omega_{u}}(f .0)$.
We can find h smooth real function such that

$$
\left.\frac{d^{2}}{d \lambda^{2}}\right|_{\lambda=0}\left(\mathcal{M}+\lambda I^{\omega_{u}}\right)(g .0+\lambda h)=0
$$

Let $\varphi_{\lambda, t}$ be the psh geodesic connecting φ_{λ} to $g .0+\lambda h$.

Minimizer of I^{ρ} over \mathcal{M}^{1}

- Since $\varphi_{\lambda, 0}$ minimizes $\mathcal{M}+\lambda I^{\omega_{u}}$, we have

$$
\begin{aligned}
O\left(\lambda^{2}\right) & \geq\left(\left.\frac{d}{d t}\right|_{t=1}-\left.\frac{d}{d t}\right|_{t=0}\right)\left(\mathcal{M}+\lambda I^{\omega_{u}}\right)\left(\varphi_{\lambda, t}\right) \\
& \geq \lambda\left(\left.\frac{d}{d t}\right|_{t=1}-\left.\frac{d}{d t}\right|_{t=0}\right) I^{\omega_{u}}\left(\varphi_{\lambda, t}\right)
\end{aligned}
$$

- Letting $\lambda \rightarrow 0$ we see that $\mathrm{I}^{\omega_{u}}$ is affine along the geodesic connecting φ_{0} to $g .0$, hence $\varphi_{0}=g .0$.

Regularity of \mathcal{E}^{1}-minimizers of \mathcal{M}

We now prove Theorem 1. Assume ω is $\csc \mathrm{K}$ and $u \in \mathcal{E}^{1}$ is a minimizer of \mathcal{M}. We want to prove that u is smooth. Let u_{j} be smooth Kähler potentials of ω, d_{1} converging to u. Let $\varphi_{u_{j}}=g_{j} .0$ be the unique minimizer of $I^{\omega_{U_{j}}}$ over \mathcal{M}^{1}. Then

$$
\mathcal{I}\left(u_{j}, g_{j} .0\right) \leq(n+1) \mathcal{I}\left(u_{j}, u\right)
$$

Since \mathcal{I} satisfies the quasi-triangle inequality, we infer

$$
\mathcal{I}\left(u, g_{j} .0\right) \leq(n+1+C) \mathcal{I}\left(u_{j}, u\right)
$$

Can extract to get $g_{j} \rightarrow g$, hence $u=g .0$.

