Chapitre 1

Rappels sur groupes et actions de groupes

1.1 Exercices de révisions

Exercice 1.1.1. Déterminer tous les groupes finis d'ordre < 6 à isomorphisme près.

Exercice 1.1.2. On admet qu'il n'existe que deux groupes différents d'ordre 6 (à isomorphisme près). Quels sont ces groupes ?

Exercice 1.1.3 (Théorème de Lagrange). Soit G un groupe fini et H un sous-groupe de G. Le Théorème de Lagrange dit : card G = card H card G/H.

- 1. Le démontrer.
- 2. Le reformuler en termes d'actions de groupes.

Rappel : Un sous-groupe H d'un groupe G est distingué si $gHg^{-1}=H$ pour tout $g\in G$. Un groupe G est simple si ses seuls sous-groupes distingués sont $\{e\}$ et G.

Exercice 1.1.4. Soit G un groupe abélien non-trivial. Montrer que G est simple si et seulement si il est fini, cyclique, d'ordre premier.

Exercice 1.1.5. Soit G un groupe agissant sur un ensemble E. Soient $x \in E$ et $g \in G$. Montrer que $\operatorname{Stab}(x)$ est isomorphe à $\operatorname{Stab}(g \cdot x)$.

Exercice 1.1.6. Montrer que tout groupe d'ordre n admet un morphisme injectif vers \mathfrak{S}_n .

Exercice 1.1.7 (Exemples d'invariants de conjugaison). Soit G un groupe fini. Soient a et b deux éléments conjugués dans G.

- 1. Montrer que a et b ont même ordre.
- 2. On suppose que G agit sur un ensemble E. Montrer que les fixateurs de a et de b ont même cardinal.
- 3. Soit ϕ un morphisme de G vers \mathfrak{S}_n . Montrer que $\phi(a)$ et $\phi(b)$ ont même signature.
- 4. Soit ϕ un morphisme de G vers $GL_n(\mathbb{C})$. Montrer que $\phi(a)$ et $\phi(b)$ ont même déterminant et même trace.

Exercice 1.1.8. Existe-t-il deux plongements de G dans \mathfrak{S}_n tels que les deux images de a aient des signatures différentes?

Exercice 1.1.9. Si a et b sont deux matrices inversibles qui ont même déterminant et même trace, sont-elles nécessairement conjuguées.

1.2 Automorphismes de graphes

Comment obtient-on des groupes naturels et intéressants? On part d'un ensemble E, on ajoute une "structure intéressante" T sur E, par exemple, une structure de groupe, une structure d'espec vectoriel, un produit scalaire, etc. Le groupe G des bijections qui préservent cette structure est intéressant. Remarque additionnelle : Souvent, le groupe $\mathrm{Bij}(E)$ des bijections de E agit sur les structures qu'on essaie de mettre, et $G = \mathrm{Stab}(T)$ est le stabilisateur de la structure choisie T pour cette action.

Dans cette section on regarde un exemple : les automorphismes de graphes.

On fixe S un ensemble, dont les éléments seront appelés sommets.

Définition 1.2.1. On appelle graphe orienté sur S la donnée d'un sous-ensemble

$$A \subset S \times S \setminus \operatorname{diag}(S)$$
.

On note (S, A) le graphe orienté. Les éléments de A sont appelés les arêtes du graphe.

On rappelle que $\operatorname{diag}(S) = \{(s, s) \in S \times S \mid s \in S\}.$

Le groupe Bij(S) agit sur l'ensemble des graphes sur S: pour σ une bijection de S,

$$\sigma \cdot (S, A) = (S, \{(\sigma(d), \sigma(f)) \mid (d, f) \in A\}).$$

Définition 1.2.2. Le groupe des automorphismes de (S, A), noté Aut(S, A), est le stabilisateur de (S, A) sous l'action de Bij(S).

Autrement dit,

$$\operatorname{Aut}(S,A) = \{ \sigma \in \operatorname{Bij}(S) \mid \forall (d,f) \in A, (\sigma(d),\sigma(f)) \in A \}.$$

Exemple 1.2.3. On prendra toujours $S = \{1, 2, ..., n\}$, donc Bij $(S) = \mathfrak{S}_n$. Pour n = 1, on n'a qu'un seul graphe (sans arêtes), et son groupe d'automorphismes est trivial comme le groupe des bijections \mathfrak{S}_1 .

Pour n=2, il n'y a que trois structures de graphes possibles : $A_1=\emptyset$, $A_2=\{(1,2)\}$, $A_3=\{(2,1)\}$ et $A_4=\{(1,2),(2,1)\}$. Le groupe symétrique \mathfrak{S}_2 consiste en l'identité et la transposition (12). LA transposition envoie A_2 sur A_3 , et laisse fixe A_1 et A_4 . On a donc $\operatorname{Aut}(S,A_1)=\operatorname{Aut}(S,A_4)=\mathfrak{S}_2$, alors que $\operatorname{Aut}(S,A_2)$ et $\operatorname{Aut}(S,A_3)$ sont triviaux.

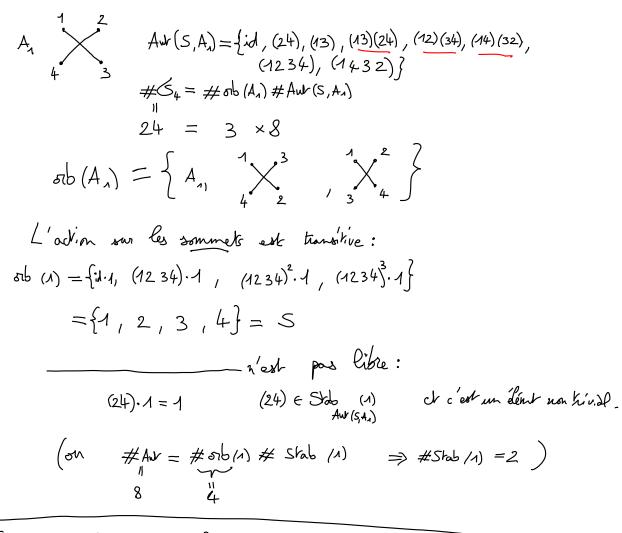
Exercice 1.2.4. Prendre un graphe sur trois ou quatres sommets au hasard, regarder ses images par tous les éléments du groupe symétrique, en déduire son groupe d'automorphismes.

Rappel: Une action d'un groupe G sur un ensemble E est transitive si il existe x dans E tel que orb(x) = E. L'action est libre si pour tout $x \in E$, $Stab(x) = \{id\}$. L'action est fidèle si l'intersection des Stab(x) pour tous les $x \in E$ est triviale.

Exercice 1.2.5. Pour n = 4, on considère les quatre ensembles d'arêtes suivants.

$$A_1 = \{(1,3), (2,4), (3,1), (4,2)\}$$

$$A_2 = \{(1,3)\}$$


$$A_3 = \{(1,2), (2,3), (3,4), (4,1)\}$$

$$A_1 = \{(1,2), (2,1), (3,2), (2,3), (3,4), (4,3), (1,4), (4,1)\}$$

1. Donner une représentation graphique (par convention, on dessine une flêche de a vers b pour l'arête (a,b), et si $\{(a,b),(b,a)\}\subset A$, on dessine simplement un segment sans flêches (on dit que l'arête entre a et b est non-orientée).

- 2. Quels sont les groupes d'automorphismes?
- 3. Dans chaque cas, est-ce que l'action induite par $\operatorname{Aut}(S, A_i)$ sur les sommets est libre? transitive? Même question pour l'action induite sur les arêtes.

Exercice 1.2.6. En trouvant un action non triviale et non fidèle de \mathfrak{A}_4 , montrer que \mathfrak{A}_4 n'est pas un groupe simple. (*indication*: considèrer l'action de \mathfrak{A}_4 sur certains graphes sur $\{1,2,3,4\}$, par exemple inspirés de l'exercice précédent.)

Exercice: Montrer que le groupe alterné ct, n'est pos simple.

Indications: 1) Transon une action de d4 non kiviele et non fidèle.

Pourgnoi sa permettrait de conclure?

Rappel: Un sons-grape H de G est distingué si

 $\forall g \in G$, gH = Hg.

* Un grange Gest simple si ses seuls sons-granges

(on $gHg^{-1}=H$)

distilyées sont fidz et G.

Si A_4GE action som l'ensemble E, on a un maphisme $\Psi: A_4 \longrightarrow Bij(E)$.

si l'adion est non triviale, In I est non triviale, donc Ker I = cA4.

Ti l'action n'est pas fidele, Kor 9 + fidj.

Donc Ker P est un sons groupe distribué propre non trivial.

2) Considérer (S, A) de l'exorcia pricident.

Rappel: A4 C G_4 est le noyan du maphisme signature $E: G_4 \rightarrow \{\pm 1\}$ A4 = Ver E= { permulations de $\{1,2,3,4\}$ de signature 1}

= { permulations qui s'écrivent comme produit d'un nombre pair de transportions}

= {id, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)}

Ay agit auxi sur les graphes sur $S=\{1,2,3,4\}$ comme sons-grape de S_4 .

Ay agit orb $(S,A_1)=\{1,2,3,4\}$ L'action est non-kinhle: les 3 zycles ne stablisent pas 1, (pan l'exercice précident)

Par l'exercice précident, $S_{1}(S_{1}(S_{1}))=\{1,1,2,3,4\}$ Par sympthie des riles des ariles des ariles, $S_{1}(S_{2}(S_{1}))=\{1,1,2,3,4\}$ Si $S_{2}(S_{2}(S_{1}))=\{1,2,3,4\}$ Si $S_{3}(S_{2}(S_{1}))=\{1,2,3,4\}$ Si $S_{4}(S_{2}(S_{2}))=\{1,2,3,4\}$ Si $S_{4}(S_{2$

On dit qu'une action de G sur un enjemble Eest triviale si $g \cdot x = z$ $\forall g \in G, x \in E$. Authenment dit, le morphisme associé $G : G \rightarrow Bij(E)$ est trivial: c-a-d $\forall g \in G$ $G : G \rightarrow Bij(E)$ est trivial:

Adim de E4 our les graphes our {1,2,3,43 :
si (S, A) graphe donné 4 23 3 les éléments de l'abète sont obtenue de la manière suivante: on onblie la numérobation des sommets X
1 2 1 3 1 2 1 3 2 1 4 3 4 3 4 2 3 4 2 4 4 3 A parmi les graphes oblems, plurieurs sont les mêmes
Produit semi-direct
Proposition: Étant donné deux groupes N et H, et O: H> Aut(N) un morphisme de groupe, grape des automorphismes de groupes de N
be Coi sur l'ensemble $N \times H$ définie par $\forall (n, li) \in N \times H$ $(n, li) \cdot (n', li') = (n \theta(li)(n'), li li')$ définit une skincture de groupe sur l'ensemble $N \times H$.
Définition: On appelle ce granpe le produit semi direct de Net H (pour rapport à 0) et on le role NXH.
Preuve: Associativité - $n_1, n_2, n_3 \in \mathcal{N}$ $h_1, h_2, h_3 \in \mathcal{H}$
$ (n_{1}, h_{1}) \cdot ((n_{2}, h_{2}) \cdot (n_{3}, h_{3})) $ $ = (n_{1}, h_{1}) \cdot (n_{2}, \theta(h_{2})(n_{3}), h_{2}h_{3}) $ $ = (n_{1}, \theta(h_{1})(n_{2}, \theta(h_{2})(n_{3})), h_{1}h_{2}h_{3}) $

$$= (n_{\Lambda} \theta(k_{\Lambda})(n_{2}) \theta(k_{\Lambda})(\theta(k_{2})(n_{3})), k_{\Lambda}k_{L}k_{3}) \qquad \qquad (\theta(k_{\Lambda}) \in Aut(N) \\ \theta(k_{\Lambda})(n_{2}) \theta(k_{\Lambda})(n_{3}) \theta(k_{\Lambda}k_{2})(n_{3}), k_{\Lambda}k_{L}k_{3}) \qquad (\theta(k_{\Lambda}) \in Aut(N) \text{ est in nephine} \\ = ((n_{\Lambda}, k_{\Lambda}) \cdot (n_{L}, k_{L})) \cdot (n_{3}, k_{3}) \qquad \qquad (a \text{ loide grape our } Aut(N) \text{ est } \\ k_{\Lambda} \in Aut(N) \text{ est$$

 \Box

* Existènce d'un éliment neutre

(eN, eH) ∈ N×H et clairement un élément neuhe pour celle la ' * Inverse

$$(n, R)^{-1} = (\Theta(R^{-1})(n^{-1}), R^{-1}) ?$$

$$(n, R) \cdot (\Theta(R^{-1})(n^{-1}), R^{-1}) = (n \Theta(R)(\Theta(R^{-1})(n^{-1})), RR^{-1})$$

$$= (n \Theta(RR^{-1})(n^{-1}), e_{H})$$

$$= (n N^{-1}, e_{H})$$

$$= (e_{N}, e_{H}).$$

Proposition: Soit NXH un produit semi direct. Alors N':= NXfeH}
est un sons-groupe distingué de NXOH, et

NXOH, ~ H.

Preuve: + N' est un sons-groupe:

$$(n_{1}e_{H}) \cdot (n'_{1}e_{H}) = (n_{1} \ominus (e_{H})(n'), e_{H}e_{H}) = (n_{1}n'_{1}e_{H})$$

 $(n_{1}e_{H})^{-1} = (\Theta(e_{H}^{-1})(n^{-1}), e_{H}^{-1}) = (n_{1}^{-1}, e_{H})$

* N' est distingué:

pour tout $(n,k) \in N \times H$, $(n',e_H) \in N'$, on sent monker qn'iP exists $(n',e_H) \in N'$ q $(n,k) \cdot (n',e_H) = (n'',e_H) \cdot (n,k) \cdot (n'',e_H) \cdot (n''',e_H) \cdot (n''',e_H) \cdot (n''',e_H) \cdot (n''',e_H) \cdot (n''',e_H) \cdot (n''',e_H) \cdot (n'''',e_$

L'unique possibilié est donc $n''=n\Theta(l_1)(n')$ n^{-1} et les în colculs monthent que sa monche.
* N xoH/N, ~ H
L'application N x H => H est un morphisme de groupe.
(n,h) is he évident par les définitions
Ker P = N'
Par théaine d'isonorphisme, NXH, ~H.
Exercice: À gnelle condition sur & est-ce gre Nx0H est
Exercice: À gnelle condition son Θ est-ce gre $N \times_{\Theta} H$ est un produit direct? $(n,k) \cdot (n',k') = (nn',kk') \cdot (n',k') = (n \Theta(k)(n'),kk')$
Ø: H - Aur (N)
$\theta(k) = id_N \qquad \forall k$
$\mathcal{G}(h) = id_N$ $\forall h$ $\mathcal{G}(h) = id_N$ $\forall h$ $\mathcal{G}(h) = id_N$ $\mathcal{G}(h) =$
C'est une condition nécessaire également: Si $\forall n,n' \in \mathbb{N}$ et $h,h' \in \mathbb{H}$, $nn' = n \Theta(h)(n')$ on peut simplifier les n
alos $\forall k \in H$, $\forall n' \in N$, $n' = \Theta(k)(n')$
alors $\forall k \in H$, $\Phi(k) = id_N$.
Le produit semi-direct apparaît en général dans 2 volknations:
i) Construction de groupes à partir de deux groupes Net H.
Par exemple, pour déterminer certains groupes finis d'ordre non previer.
200 dans ce adre, on peut déterminer ANN/N)
pris les maphismes possibles O: H -> Aut/N).

ii) Étant donné un gronge G, l'écrire comme un produit semidirect.
~> identifier deux so-graypes provides N et H
(qui vérifient certaines propriétés : · N distingué dans G.
· l'appliated NxH -> G est une sijelide.
ma identifier Q.
Exercice (dans le courre i): Déléuniner tous les groupes d'ordre 2p
où p est un nombre premier.
Exercice (dans le codre ii): Parin les graphes, on appelle polygones les graphes Au type: 1 2 5 2 5 2 5 2
, ·
on appelle polygone stiente un graphe du type:
Monther gre, si (5, A) est un polygone, alos Ant (5, A) est un produit semi-direct, et le décrire prévoiment.
Premier exercice: (Supposons $p \neq 2$) Soit G un groupe d'ordre $2p$. (Les Héorèmes de Sylow nons donnent l'existence d'un sous-groupe de G d'ordre p , donc isomaphe à $\mathbb{Z}/p\mathbb{Z}$.
Condidak pour G: De groupe cyclique d'adre 2p: Z/2pZ.
2) on peut essayer d'en produire avec 2/20 et 2/p2
produit died: 727 × 7/2 Non: isonople à 2/2p2
$(\overline{1},\overline{1})$ est un généraleur du groupe $\overline{\text{car}}$ p+2 donc $\overline{\text{p}}_{1}$ 2 = 1
produit semi direct? le candidat naturel pour N (por les trêm de Sylon) ext Z/Z.
le candidat pour Hest Z/2

Quel
$$\theta: \mathbb{Z}_{\mathbb{Z}} \longrightarrow Auk(\mathbb{Z}_{p})$$
?

 $\bar{o} \mapsto id_{\mathbb{Z}_{\mathbb{Z}}}$
 $\bar{\tau} \mapsto (\bar{a} \mapsto \bar{-a})$

 $\mathbb{Z}_{p\mathbb{Z}} = \{\overline{o}, \overline{1}, ..., \overline{p1}\}$

Le grospe $\mathbb{Z}/p\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}$ est le grospe diédal.

Q: - quel est le george Aut (Z/pZ)?

- · quel sone les maylismes possibles Z/Z -> Aul (Z/pZ)?
- · pour groi est-ce que un gronpe d'adre 2p est nécessainement un produit temi-direct?

Prahabe fois: fin de ces exercices

débont Chapitre 1: Gronges linéaires, aspects topologiques.

Exercice: Déterminer tous les groupes d'ordre 2p, où pest un nombre prenier > 2.

On en évait avrivés aux questions:

Q1: Quel est le groupe Aut (Z/pZ)?

Q2: Quels sont les maphismes possibles $\theta: \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \operatorname{Aut}(\mathbb{Z}_{p\mathbb{Z}})$?

Q3: Pourgnoi un groupe d'ordre 2p est-il nécessairement un produit senii-direct?

Pour Q1: Pour construire des morphismes à partir de $\mathbb{Z}/p\mathbb{Z}$, on peut construire des morphismes à partir de \mathbb{Z} et utiliser un thun d'isomophisme.

Un morphisme $\Psi: \mathbb{Z} \longrightarrow \mathbb{Z}/\mathbb{Z}$ est déterminé par ℓ' image $\Psi(1)$ de 1. (De plus, pour tout chix de $\Psi(1)$, on a bien un marphisme Ψ)

Soit 4 un tel maphisme, et $\overline{k} = 9(4)$. Alors $9(m) = m\overline{k}$ $\text{Ker}(9) = \{m; \overline{mk} = \overline{0}\} = \{m; p|mk\} = \{m; p|m \text{ on } p|k\}$

En portionier, $p\mathbb{Z} \subset \text{Ker}(\mathcal{G})$ donc \mathcal{G} définit un morphisme $\mathcal{G}: \mathbb{Z}_p\mathbb{Z} \longrightarrow \mathbb{Z}_p\mathbb{Z}$ $\overline{m} \longmapsto \mathcal{G}(m) \subseteq m\mathbb{Z}$

 $\ker(\overline{\varphi}) = \{ \overline{m} : p | m \text{ on } p | k \} = \{ \overline{m} : \overline{m} = 0 \text{ on } \overline{k} = 0 \}$

Deux cos: si $\bar{k}=0$, le maphisme $\bar{\varphi}$ est trival.

sinon, le maplisme q estinicht.

Dans le second cos, \overline{Y} est un automaphisme par condiaont.

De plus, tous les morphismes $\mathbb{Z}/\mathbb{Z} \to \mathbb{Z}/\mathbb{Z}$ sont détenus de celle monière

Donc $\mathbb{A}uV(\mathbb{Z}/\mathbb{Z}) \cong (\mathbb{Z}/\mathbb{Z})^*$ (via $Y \mapsto Y(\overline{I})$)

isomorphisme de groupe: si $Y, Y \in \mathbb{A}uV(\mathbb{Z}/\mathbb{Z})$ $Y \circ Y(\overline{I}) = Y(\overline{I}) \cdot Y(\overline{I})$ dus \mathbb{Z}/\mathbb{Z} .

Rem: on awart pu s'en donter: Z/Z est un caps.

Powr Q2: Un marphisme $\mathbb{Z}_{2} \xrightarrow{\Theta} \operatorname{Aut}(\mathbb{Z}_{p\mathbb{Z}}) \cong (\mathbb{Z}_{p\mathbb{Z}})^{*}$ est défind par l'image de $\overline{1}$.

Un tel marphisme est bien défini si et senlement si $\theta(\overline{1})^{2} = \overline{1}$ (dans $(\mathbb{Z}_{p\mathbb{Z}})^{*}$). C' est le cas seri $\theta(\overline{1}) = \pm 1$ dans $\mathbb{Z}_{p\mathbb{Z}}$ (en effet $\overline{k}^{2} = \overline{1} \Longrightarrow k^{2} = mp + 1$ $\Longrightarrow p | (k-1) \text{ on } p | (k+1)$ $\Longrightarrow \overline{k} = \overline{1} \text{ on } \overline{k} = \overline{1} \text{ dus } \mathbb{Z}_{p\mathbb{Z}}$

 \rightarrow 9: $\Theta(\bar{1}) = \bar{1}$, als le maplione Θ obtem est hivial.

duc le produit semi direct associé est un produit direct $\frac{2}{2p^2}$. $\Rightarrow 9: \theta(7) = -1$ et p>2, alors $-1 \neq 1$, donc θ n'est pas trivial,

donc le produit orni direct $\mathbb{Z}_{p^2} \times_{0} \mathbb{Z}_{2^2} = n'est$ pas isomaphe

à \mathbb{Z}_{1-1}

On a montré qu'il y a exactement deux produits semidirects
de Z/Z pour Z/2 Z possibles: Z/2 et le groupe diédral.
Pour Q3:
D'about des remarques générales sur les produits semi directs.
Soit Gun groupe, Num sous-groupe distingué de G
Hun sous-grape quelcongre de G.
On a un maghione $\theta: H \longrightarrow Aut(N)$
$h \mapsto (n \mapsto hnh^{-1})$
donc un produit semidired N×0 H.
L'application $N \times_0 H \xrightarrow{\varphi} G$ est un maphione de grape. $(n, R) \longmapsto nR$
En effet: $ \varphi(n, k) \cdot \varphi(n', k') = nk \cdot n'k' $ $ = nk n'k^{-1}kk' $ $ = \varphi(nk n'k^{-1}, kk') $ $ = \varphi((n, k) \cdot (n', k')) $
⚠ Co morphisme n'est pas, en génévol, un isomorphisme!
Dans le cos de l'exercice:
Gest un groupe d'ordre 2p.
Par thésième de Sylaw, il existe: « un sons-grape H d'ordre 2 (danc H2 Z/Z)
· un vous groupe N d'odre p (donc N= Z/pZ).
de plus, le sous-groupe N'est distingué.
On a donc un morphisme $9: \mathbb{Z}/2\mathbb{Z} \longrightarrow Z$

On va monther gre c'est un isomaphisme.
Les groupes de départ et d'arrivée ont cardinal 2p, donc il suffit
Le montrer que 4 est injectif.
$\Upsilon(n,h) = e \implies n = h^{-1}$
or In ext d'ordre p si n + e (h-1 ext d'ordre 2 si h + e
or $p \neq 2$, done $n = h^{-1} \implies n = e$ et $h = e$.
Donc Pest bien un isomorphisme.
On a resolu l'exercice:
Tout grape d'adre 2p est isomorphe sont à Z/2pZ
ont an grape diédral D:= Z/pZ × Z/z
on 0: 2/2 - Aut 2/2) = (2/2)
$\overrightarrow{1} \longrightarrow \overrightarrow{-1}$
Exercice: Montrer que le groupe d'automorphisme d'un graphe polygone est un produit semi direct, et le décrite précisément.
Aut(S,A)=:G The sommetic 3 4 5 6
Si le mb de sommets pert premier, intaition: G'est d'ordre 2p.
Par l'exercia précident, G serait un produit semi direct, qu'on imagine

non direct, donc Grerant le groupe diédral Dzp.

Inhihon: en général, $G = D_{2n} = \mathbb{Z}_{n\mathbb{Z}} \times_{\mathfrak{Q}} \mathbb{Z}_{2\mathbb{Z}}$ où $\theta: \mathbb{Z}_{2\mathbb{Z}} \longrightarrow \text{Aut}(\mathbb{Z}_{n\mathbb{Z}})$ $\bar{1} \mapsto (\bar{k} \mapsto -\bar{k})$

on considere 1 On a un sons-groupe naturel de G: le graphe: le sons-groupe engendré par le n-cycle (123 ... n-1 n) On vent: . Konver un candidat so graye H d'ordre 2. · monther que N'est distingué. 1 2 5 5 Un Lineal d'ordre 2: 3=2×1+1 | 4=2×2 $sin=2k+1 \qquad (2n)(3n-1)(4n-2)...(k+1k+2)$ $s_{1} = 2k$ (2n) (3 n-1) ... (k k+2) Admetons que N'est distingué pour l'instant. On a donc 9: NXOH -> G maphisme de groupe (n,h) >> nh Il reste à marker que Past un isomaphisme. Par ex, mg l'estinjectif et que l'ordre de Gest 2n. Injechih : $nh = e \Leftrightarrow n-e^{-1}$ h'd'ordre 2 ou h=e n d'ordre un diviseur den u partialler, in a pair, l'ordre peut être 2! L'ordre ne suffit pas à conclure.

À réoliger pour jeudi 24:

1) l'adre de G est 2n

2) Pest injective.

Chapitre 2

Les groupes linéaires, aspects topologiques

2.1 Rappels sur le groupe linéaire

Soit \mathbb{K} un corps (commutatif). Soit V un \mathbb{K} -espace vectoriel de dimension finie.

Définition 2.1.1. Le groupe général linéaire sur V, noté GL(V), est le groupe formé par les applications linéaires bijectives de V dans V.

Remarque 2.1.2. C'est le sous-groupe des bijections de V qui préservent la structure de \mathbb{K} -espace vectoriel.

Le choix d'une base (e_1, \ldots, e_d) de V fournit un isomorphisme de V avec \mathbb{K}^n (qui envoie $x_1e_1 + \cdots + x_ne_n$ sur (x_1, \ldots, x_n) . Cet isomorphisme fournit aussi un isomorphisme entre $\mathrm{GL}(V)$ et le groupe des matrices inversibles $\mathrm{GL}_d(\mathbb{K})$ (muni de la multiplication de matrices). On décrit plus succintement l'inverse de cet isomorphisme, qui envoie une matrice inversible M sur l'application $x_1e_1 + \cdots + x_ne_n \mapsto MX$ où X est le vecteur colonne de coefficients (x_1, \ldots, x_n) .

On se rappelle que sur le smatrices carrées, on a deux applications très utiles : la trace tr : $\mathcal{M}_d(\mathbb{K}) \to \mathbb{K}, A \mapsto \sum_{i=1}^d a_{i,i}$, et le déterminant det : $\mathcal{M}_d(\mathbb{K}) \to \mathbb{K}, A \mapsto \sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^d a_{\sigma(i),i}$. On a $\mathrm{GL}_d(\mathbb{K}) = \det^{-1}(\mathbb{K}^*)$, et le déterminant, restreint à $\mathrm{GL}_d(\mathbb{K})$, est un morphisme de groupes.

Définition 2.1.3. Le groupe spécial linéaire, noté $SL_d(\mathbb{K})$, est le sous-groupe de $GL_d(\mathbb{K})$ formé des matrices de déterminant égal à un.

Le $centre\ Z(G)$ d'un groupe G est le sous-groupe formé des éléments qui commutent avec tous les autres :

$$Z(G) = \{ z \in G \mid zq = qz \quad \forall q \in G \}.$$

On remarque que Z(G) est toujours un sous-groupe distingué de G.

Proposition 2.1.4. Le centre de $GL_d(\mathbb{K})$ est formé des matrices scalaires :

$$Z(GL_d(\mathbb{K})) = \{\lambda I_d \mid \lambda \in \mathbb{K}^*\}.$$

Exercice 2.1.5. Prouver ce résultat. Quel est le centre de $SL_d(\mathbb{K})$?

Définition 2.1.6. Le groupe projectif linéaire est le groupe quotient $\operatorname{PGL}_d(\mathbb{K}) = \operatorname{GL}_d(\mathbb{K})/Z(\operatorname{GL}_d(\mathbb{K}))$. Le groupe projectif spécial linéaire est le groupe quotient $\operatorname{PSL}_d(\mathbb{K}) = \operatorname{SL}_d(\mathbb{K})/Z(\operatorname{SL}_d(\mathbb{K}))$.

Exercice 2.1.7. Montrer que $\operatorname{PGL}_d(\mathbb{C})$ et $\operatorname{PSL}_d(\mathbb{C})$ sont isomorphes. Attention ce n'est pas vrai pour un corps quelconque \mathbb{K} .

Exercice 2.1.8. Montrer que $GL_n(\mathbb{K})$ est isomorphe à un produit semi-direct de $SL_n(\mathbb{K})$ avec \mathbb{K}^* . Trouver des conditions suffisantes pour que ce produit soit direct.

Exercice 2.1.9. Soit \mathbb{F}_p un corps fini (p nombre premier).

- 1. Quel est l'ordre de $GL_n(\mathbb{F}_p)$?
- 2. Quel est l'ordre de $SL_n(\mathbb{F}_p)$?
- 3. Quel est l'ordre de $\operatorname{PGL}_n(\mathbb{F}_p)$?
- 4. Quel est l'ordre de $PSL_n(\mathbb{F}_p)$?
- 5. En déduire que $\operatorname{PGL}_n(\mathbb{K})$ et $\operatorname{PSL}_n(\mathbb{K})$ ne sont pas isormorphes en général.

2.2 Notion de groupe topologique

Définition 2.2.1. Un groupe topologique est un groupe G dont l'ensemble sous-jacent est muni d'une topologie telle que :

- 1. Le produit de groupe $G \times G \to G, (g,h) \mapsto gh$ est une application continue, et
- 2. l'inverse $G \to G, g \mapsto g^{-1}$ est une application continue.

Exemple 2.2.2. Le groupe additif $(\mathbb{C}, +)$ est un groupe topologique pour la topologie usuelle de bbC.

Le groupe multiplicatif (\mathbb{C}^*, \times) est un groupe topologique pour la topologie induite de $bbC^* \subset \mathbb{C}$.

On remarque que $\mathrm{GL}_1(\mathbb{C})=\mathbb{C}^*$. Plus généralement, on va montrer que $\mathrm{GL}_n(\mathbb{C})$ est un groupe topologique.

Théorème 2.2.3. Le groupe $GL_n(\mathbb{C})$, muni de la topologie induite de $GL_n(\mathbb{C}) \subset M_n(\mathbb{C})$, est un groupe topologique.

Remarque 2.2.4. Le déterminant est une application continue de $M_n(\mathbb{C})$ dans \mathbb{C} . En effet, d'après l'expression rappelée plus tôt dans ce cours :

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i},$$

c'est un polynôme en les coefficients de la matrice.

Comme première conséquence de cette remarque, on note que $GL_n(\mathbb{C}) = \det^{-1}(\mathbb{C}^*)$ est un ouvert de $M_n(\mathbb{C})$. On va aussi utiliser la remarque pour prouver que l'inverse de matrice est une application continue.

La topologie induite par $\mathrm{GL}_n(\mathbb{C}) \subset \mathrm{M}_n(\mathbb{C})$ fournit bien une topologie sur l'ensemble sousjacent au groupe. Pour montrer que c'est un groupe topologique, il faut vérifier que le produit et l'inverse sont des applications continues.

La loi de groupe sur $GL_n(\mathbb{C})$ est la restriction du produit de matrices $M_n(\mathbb{C}) \times M_n(\mathbb{C}) \to M_n(\mathbb{C})$ défini en terme des coefficients par :

$$((a_{i,j})_{1 \le i,j \le n}, (b_{k,l})_{1 \le k,l \le n}) \mapsto \left(\sum_{r=1^n} a_{p,r} b_{r,q}\right)_{1 \le p,q \le n}$$

C'est une application polynomiale (chaque application composante est un polynôme), donc c'est une application continue. Sa restriction à $\mathrm{GL}_n(\mathbb{C}) \times \mathrm{GL}_n(\mathbb{C})$ muni de la topologie induite est donc continue.

Pour l'inverse, on peut utiliser l'expression de l'inverse d'une matrice (inversible) à l'aide de la comatrice : si $A \in GL_n(\mathbb{C})$, alors

$$A^{-1} = \frac{1}{\det(A)} \operatorname{com}(A)^{T}$$

où $(-1)^{i+j}(\operatorname{com}(A))_{i,j}$ est le déterminant de la matrice carrée obtenue en supprimant la *i*ème ligne et la *j*ème colonne de A (on appelle les matrices ainsi obtenues des *mineurs* de A). Le déterminant et les applications $A \mapsto (\operatorname{com}(A))_{i,j}$ sont continues, donc l'application $A \mapsto A^{-1}$ l'est aussi là où det ne s'annule pas, c'est-à-dire sur $\operatorname{GL}_n(\mathbb{C})$.

On a ainsi bioen démontré que $GL_n(\mathbb{C})$ est un groupe topologique.

Corollaire 2.2.5. Les groupes $GL_n(\mathbb{R})$, $SL_n(\mathbb{C})$, $SL_n(\mathbb{R})$, sont des groupes topologiques pour la topologie induite (par leur inclusion dans $GL_n(\mathbb{C})$).

2.3 Action de $GL(V) \times GL(W)$ sur L(V, W)

2.3.1 Description de l'action et matrices équivalentes

Soit V un \mathbb{K} -espace vectoriel de dimension n, et W un \mathbb{K} -espace vectoriel de dimension m. On note L(V, W) le \mathbb{K} -espace vectoriel formé par les applications linéaires de V dans W.

Il y a une action naturelle du groupe produit $GL(V) \times GL(W)$ sur L(V, W) définie par

$$\forall (g,h) \in \mathrm{GL}(V) \times \mathrm{GL}(W), \forall f \in L(V,W), \qquad (g,h) \cdot f = h \circ f \circ g^{-1}$$

(vérifier que ça défini bien une action).

Choisissons une base de V et une base de W. Ces choix fournissent un isomorphisme entre L(W, W) et $M_{m \times n}(\mathbb{K})$, entre GL(V) et $GL_n(\mathbb{K})$ et entre GL(W) et $GL_m(\mathbb{K})$. Sous ces isomorphismes, laction décrite ci-dessus se traduit en l'action de $GL_n(\mathbb{K}) \times GL_m(\mathbb{K})$ sur $M_{m \times n}(\mathbb{K})$ définie par $(A, B) \cdot M = BMA^{-1}$ et appelée action par équivalences.

Définition 2.3.1. Deux matrices M et N dans $M_{m\times n}(\mathbb{K})$ sont équivalentes s'il existe $A \in GL_n(\mathbb{K})$ et $B \in GL_m(\mathbb{K})$ telles que $N = BMA^{-1}$.

Autrement dit, deux matrices sont équivalentes si et seulement si elles sont dans la même orbite pour l'action ci-dessus.

Remarque 2.3.2. Deux matrices sont équivalentes si et seulement si elles représentent la même application $\mathbb{K}^n \to \mathbb{K}^n$, écrite dans des choix de bases différentes au départ et/ou à l'arrivée.

2.3.2 Description des orbites

On rappelle que, si $M \in M_{m \times n}(\mathbb{K})$, le rang de M, noté $\operatorname{rg}(M)$, est la dimension de l'image de M vu comme sous-espace vectoriel de \mathbb{K}^n .

Proposition 2.3.3. Soient M et N deux matrices équivalentes, alors rg(M) = rg(N).

Démonstration. Écrivons $N = BMA^{-1}$ avec $A \in GL_n(\mathbb{K})$ et $B \in GL_m(\mathbb{K})$. De manière équivalente, NA = BM. Comme A définit un isomorphisme de \mathbb{K}^n dans \mathbb{K}^n , on a $A(\mathbb{K}^n) = \mathbb{K}^n$, et donc $NA(\mathbb{K}^n) = N(\mathbb{K}^n)$, d'où rg(N) = rg(NA).

Par le théorème du rang, $rg(NA) = n - \dim \ker(NA) = n - \dim \ker(BM)$.

Comme B est un isomorphisme, Bx = 0 si et seulement si x = 0. On en déduit que $\ker(BM) = \ker(M)$.

Donc $\operatorname{rg}(N)=n-\dim\ker(M).$ Par le théorème du rang à nouveau, c'est égal au rang de M.

En fait, une orbite est complètement déterminée par le rang de ses éléments.

Théorème 2.3.4. Il y a exactement $\min(m, n) + 1$ orbites pour l'action de $GL_n(\mathbb{K}) \times GL_m(\mathbb{K})$ par équivalences, et les orbites sont les matrices de rang fixé égal à r, pour r compris entre 0 et $\min(m, n)$.

2.3.3 Une manière de prouver le théorème : le pivot de Gauss

Notations : on note $E_{k,l} \in \mathcal{M}_{m \times n}$ la matrice dont les coefficients sont $\delta_{k,i}\delta_{j,l}$, c'est-à-dire que des zéros partout sauf à l'intersection de la *i*ème ligne et de la *j*ème colonne.

On pose $I_r = \sum_{i=1}^r E_{i,i} \in M_{m \times n}$.

Le pivot de Gauss permet, par des opérations sur les lignes et sur les colonnes, de transformer une matrice A quelconque de $M_{m\times n}$ en une matrice de la forme I_r pour un r compris entre 0 et $\min(m,n)$. Plus précisèment, $r = \operatorname{rg}(A)$. Voici l'algorithme.

Étape 0: (cas d'arrêt) si $A = 0_{m \times n}$, alors on s'arrête.

Étape 1 : si $a_{1,1} = 0$, on échange des lignes et des colonnes pour avoir $a_{1,1} \neq 0$.

Étape 2: si $a_{1,1} \neq 1$, on multiplie la première ligne par $a_{1,1}^{-1}$ pour avoir $a_{1,1} = 1$.

Étape 3 : par une suite de transvections sur les lignes et les colonnes (L_i remplacée par $L_i - a_{i,1}L_1$, C_j remplacée par $C_j - a_{1,j}C_1$), on s'assure que $a_{1,j} = 0$ pour $j \neq 1$ et $a_{i,1} = 0$ pour $i \neq 1$.

Étape 4 : la matrice A est maintenant diagonale par blocs de forme A = diag(1, A') avec $A' \in \mathcal{M}_{(m-1)\times(n-1)}(\mathbb{K})$. On reprends à l'étape 0 avec A' à la place de A.

Le processus s'arrête après au plus min(m, n) répétitions.

Le lien avec l'action de $\mathrm{GL}_n(\mathbb{K}) \times \mathrm{GL}_m(\mathbb{K})$ est obtenu de la manière suivante.

Définition 2.3.5. 1. Soit $\sigma \in \mathfrak{S}_n$ une permutation. La matrice de permutation associée à σ est la matrice

$$P_{\sigma} = \sum_{i=1}^{n} E_{\sigma(i),i} \in \mathcal{M}_n(\mathbb{K}).$$

2. Soit $\lambda \in \mathbb{K}^*$ et $i \in \{1, 2, ..., n\}$. La matrice de dilatation associée à λ et i est la matrice

$$D_i(\lambda) = I_n + (\lambda - 1)E_{i,i} \in M_n(\mathbb{K}).$$

3. Soit $\lambda \in \mathbb{K}^*$ et $i \neq j$ dans $\{1, 2, \dots, n\}$. La matrice de transvection associée à λ , i et j est la matrice

$$T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$$
.

Exercice 2.3.6. Faire des schémas pour représenter ces matrices.

On appelle génériquement ces matrices des matrices d'opérations élémentaires.

Proposition 2.3.7. La multiplication d'une matrice $A \in M_{m \times n}(\mathbb{K})$ par une matrice $m \times m$ de transposition, de dilatation, de transvection, à gauche réalise l'opération correspondante sur les lignes de la matrice A. La multiplication d'une matrice $A \in M_{m \times n}(\mathbb{K})$ par une matrice $n \times n$ de transposition, de dilatation, de transvection, à droite réalise l'opération correspondante sur les colonnes de la matrice A.

Démonstration. En exercice. Écrire précisèment à quelle opérations correspond la multiplication par P_{σ} , par $D_i(\lambda)$, par $T_{i,j}(\lambda)$ à gauche, puis à droite.

Proposition 2.3.8. Les matrices de permutations, de dilatations et de transvections sont inversibles.

 $D\'{e}monstration$. En exercice. Déterminer explicitement leurs inverses et montrer que cela reste des matrices d'opérations élémentaires.

Fin de la preuve du Théorème. L'algorithme du pivot de Gauss se traduit, d'après les propositions ci-dessus, en l'existence, pour toute matrice $M \in \mathcal{M}_{m \times n}(\mathbb{K})$, d'une matrice $A \in \mathrm{GL}_n(\mathbb{K})$ (produit d'inverse de matrices d'opérations élémentaires), et d'une matrice $B \in \mathrm{GL}_m(\mathbb{K})$ (produit de matrices d'opérations élémentaires) telles que

$$BMA^{-1} = I_r.$$

De plus, comme on l'a déjà remarqué, r = rg(M).

Toutes les possibilités de rang sont réalisées par les matrices I_r pour $0 \le r \le \min(m, n)$, et I_r n'est pas équivalente à I_s pour $r \ne s$ puisque leur rangs sont différents.

2.3.4 Aspects topologiques de l'action par équivalences

On se place dans le cas $\mathbb{K} = \mathbb{C}$.

Théorème 2.3.9. La partie $GL_n(\mathbb{C}) \subset M_n(\mathbb{C})$ est une partie dense.

Démonstration. Le principe est de construire, pour $M \in \mathrm{M}_n(\mathbb{C})$ quelconque, une suite (M_k) de matrices inversibles qui converge vers M. Il y a de nombreuses preuves différentes. En voici une utilisant l'action par équivalences. Soit r le rang de M. Alors il existe A et B dans $\mathrm{GL}_n(\mathbb{C})$ telles que $M = BI_rA^{-1}$. On considère la suite $(M_k)_{k\geq 1}$ d'élément général

$$M_k = B \operatorname{diag}(1, 1, \dots, 1, 1/k, 1/k, \dots, 1/k)A^{-1}$$

où les 1 sont répétés r fois, et les 1/k sont répétés n-r fois. La matrice diagonale diag $(1,\ldots,1,1/k,\ldots,1/k)$ est inversible, donc M_k aussi. La suite diag $(1,\ldots,1,1/k,\ldots,1/k)$ converge vers I_r . Le produit de matrice étant continu, (M_k) converge vers $BI_rA^{-1}=M$.

Exercice 2.3.10. Déterminer l'adhérence de l'ensemble des matrices de rang r dans $M_{m\times n}(\mathbb{C})$, où $0 \le r \le \min(m, n)$.

2.4 Action de GL(V) sur L(V, V) par conjugaisons

2.4.1 Desciption de l'action et terminologie

On rappelle que L(V, V) est l'espace vectoriel des applications linéaires du \mathbb{K} -espace vectoriel V dans lui-même.

Le groupe GL(V) agit sur L(V, V) par

$$\forall g \in \mathrm{GL}(V), \forall f \in L(V, V), \qquad g \cdot f = g \circ f \circ g^{-1}.$$

Par le choix d'une base pour se ramener à des matrices, il suffit de considérer l'action correspondante de $GL_n(\mathbb{K})$ sur $M_n(\mathbb{K})$ donnée par $A \cdot M = AMA^{-1}$ pour $A \in GL_n(\mathbb{K})$ et $M \in M_n(\mathbb{K})$.

Définition 2.4.1. Deux matrices M et N dans $M_n(\mathbb{K})$ sont semblables si elles sont dans la même orbite pour l'action ci-dessus, appelée action par similitudes. On appelle classes de similitudes les orbites pour cette action.

Remarque 2.4.2. Cette action par similitude (on dit aussi par conjugaison) peut se retrouver en considérant la restriction de l'action par équivalences de $GL_n(\mathbb{K}) \times GL_n(\mathbb{K})$ sur $M_n(\mathbb{K})$ au sous-groupe diagonal $diag(GL_n(\mathbb{K})) = \{(A, A) \in GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \mid A \in GL_n(\mathbb{K})\}$, qui est bien sûr isomorphe à $GL_n(\mathbb{K})$. En particulier, deux matrices semblables sont équivalentes et ont même rang.

2.4.2 Invariants de similitude

Rappelons d'abord quelques définitions. Soit $M \in M_n(\mathbb{K})$.

Le polynôme caractéristique de M, noté χ_M , est le polynôme en la variable X défini par $\chi_M(X) = \det(XI_n - M)$.

Le polynôme minimal de M, noté P_M , est le polynôme en la variable X, de degré minimal et de coefficient directeur égal à un, tel que si on remplace X par M dans l'expression de P_M , on a $P_M(M) = 0$.

Proposition 2.4.3. Si A et B sont semblables, alors $\chi_A = \chi_B$.

Démonstration. Écrivons $B = gAg^{-1}$, pour un $g \in GL_n(\mathbb{K})$. On a

$$\chi_B(X) = \det(XI_n - B)$$

$$= \det(Xgg^{-1} - gAg^{-1})$$

$$= \det(g(XI_n - A)g^{-1})$$

$$= \det(g)\det(XI_n - A)\det(g)^{-1}$$

$$= \det(XI_n - A)$$

$$= \cot(XI_n - A)$$

$$= \chi_A(X),$$
car det est un morphisme
$$= \cot(XI_n - A)$$

$$= \chi_A(X),$$

ce qu'il fallait démontrer.

Corollaire 2.4.4. Si A et B sont semblables, alors det(A) = det(B) et tr(A) = tr(B).

Démonstration. Le déterminant est (au signe près), le coefficient constant du polynôme caractéristique. La trace est l'opposé de son coefficient sous-directeur (le coefficient de X^{n-1}).

Proposition 2.4.5. Si A et B sont semblables, alors $P_A = P_B$.

Démonstration. Il suffit de montrer que pour tout polynôme Q, Q(A) = 0 si et seulement si Q(B) = 0. Par symétrie des rôles de A et B, il suffit de montrer que pour tout polynôme Q,

$$Q(A) = 0 \Longrightarrow Q(B) = 0.$$

Supposons Q(A)=0, notons $Q(X)=a_0+a_1X+\cdots+a_kX^k$, et $B=gAg^{-1}$ pour un $g\in \mathrm{GL}_n(\mathbb{K})$. Alors

$$Q(B) = a_0 + a_1 g A g^{-1} + a_2 g A g^{-1} g A g^{-1} + \dots + a_k (g A g^{-1})^k$$

$$= g (a_0 + a_1 A + \dots + a_k A^k) g^{-1}$$

$$= g Q(A) g^{-1}$$

$$= 0$$

Proposition 2.4.6. Si A et B sont semblables, $\lambda \in \mathbb{K}$ et $k \in \mathbb{N}$, alors

$$\dim \ker \left((A - \lambda I_n)^k \right) = \dim \ker \left((A - \lambda I_n)^k \right).$$

Démonstration. Notons $B = gAg^{-1}$. On a aussi $(B - \lambda I_n)^k = g(A - \lambda I_n)^k g^{-1}$ par la simplification habituelle $g^{-1}g = I_n$. Alors on voit en particulier que les matrices $(B - \lambda I_n)^k$ et $(A - \lambda I_n)^k$ sont équivalentes. Elles ont par conséquent même rang. La conclusion du théorème suit par application du Théorème du rang.

2.4.3 Description des classes de similitude pour $\mathbb{K} = \mathbb{C}$

On va utilise, sans le redémontrer, un résultat vu l'an dernier : la réduction de Jordan.

Définition 2.4.7. Un bloc de Jordan de taille $k \in \mathbb{N}^*$ et de valeur propre $\lambda \in \mathbb{C}$ est la matrice

$$J_{k,\lambda} = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix} = \lambda I_k + \sum_{i=1}^{k-1} E_{i,i+1} \in \mathcal{M}_k(\mathbb{K})$$

Théorème 2.4.8 (Réduction de Jordan complexe). Toute matrice $A \in M_n(\mathbb{C})$ est semblable dans $M_n(\mathbb{C})$ à une matrice B diagonale par blocs, dont les blocs sont des blocs de Jordan. De plus, la matrice B de cette forme est unique à permutation des blocs diagonaux près, et on l'appelle la forme de Jordan de A.

Corollaire 2.4.9. Une classe de similitude est déterminée par la forme de Jordan de ses éléments.

Remarquons par ailleurs qu'on peut encoder la forme de Jordan par la donnée d'une partition de l'ensemble $\{1, 2, ..., n\}$ et d'un nombre complexe pour chaque part de la partition.

2.4.4 Description des classes de similitudes pour $\mathbb{K} = \mathbb{R}$

Définition 2.4.10. Étant donné un angle $\theta \in [0, 2\pi[$, on note

$$R_{\theta} := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

la matrice de rotation associée.

Si on se donne de plus un entier $k \in \mathbb{N}^*$ et un réel non-nul $\lambda \in \mathbb{R}^*$, on note $K_{k,\lambda,\theta}$ la matrice définie par blocs par

$$K_{k,\lambda,\theta} = \begin{pmatrix} \lambda R_{\theta} & I_2 & 0_2 & \cdots & 0_2 \\ 0_2 & \lambda R_{\theta} & I_2 & \cdots & 0_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0_2 & 0_2 & 0_2 & \cdots & \lambda R_{\theta} \end{pmatrix} \in M_{2k}(\mathbb{R}).$$

Théorème 2.4.11 (Réduction de Jordan réelle). Toute matrice $A \in M_n(\mathbb{R})$ est semblable dans $M_n(\mathbb{R})$ à une matrice B diagonale par blocs, dont chaque bloc est soit de la forme $K_{k,\lambda,\theta}$ pour $k \in \mathbb{N}^*$, $\lambda \in \mathbb{R}_+^*$, $\theta \in]0, \pi[$, soit de la forme $J_{k,\lambda}$ pour $k \in \mathbb{N}^*$ et $\lambda \in \mathbb{R}$. On appelle B la forme de Jordan réelle de A, et elle est unique à permutation des blocs diagonaux près.

Exercice 2.4.12. La matrice R_{θ} est sa propre forme de Jordan réelle. Quelle est sa forme de Jordan complexe?

Théorem: GLu(C) est connexe par arcs.

On commence par le cas particulier GL, (C)= C*.

Rappelons d'abord qu'il suffit de relier tout z e [* à 1 par un chemin continu pour montrer que C * est connexe par arcs.

En effet, si pour tout z il existe un chemin

Now powr bons $z_{1}, z_{2} \in \mathbb{C}^{+}$, le chemin

et un chemin continu entre zet ze.

Ce maisonnement est valable en général pour la connexté par arcs: il suffit de traver un chemin continu entre un point fixé et n'importe guel ontre point.

Dans ((plukst gne (*), c'est forcle de Konver un chemin continu enke deux points a et b : il sonflit de prendu le segment t > (1-t) a + t b.

Dons C*, le problème est que le segment pent porser pour zoro. Ce n'est pas le cas si a=1 et b & R*

On a donc un chemin continu entre 1 et tout ZE [* R*_ Si ZER*, on peut d'abord suivre le segment entre 1 et i, puis celui entre i et z : en fonules,

8: [0,1] -> C* t -> (1-2t)+2ti pour te[0, 1] (2t-1)z+(2-2t)i pour t ∈ [1/2,1] est un chemin continu entre 800) = 1 et 8(1)= Z.

lassons an cas général. Pour GLn(C) on va utiliser l'achten par similitudes et la réduction de Jordan pour constinire un chemin entre In et une mallice AEGLn(C) grelcongue. It exists une matrice PEGLn(C) rells que B:=PAPT soit la forme de Jordan de C. En particulier, B'est triangulaire supérieure avec des cafficients diagonaire non nuls. On vote B=(bij) On construit d'abord un chemin 8: (0, 13 -> Mn (C) par ses coefficients de la manière suivante: $(\check{\mathcal{S}}(t))_{i,j} = tb_{i,j}$ si $i \neq j$ et pour (8(t)),, on choisit un chemin (8(t)),: Co, iJ->C* entre 1 et bi, donné par la connexité par avois de C* Alors pour tout t c [0,1], la matrice & (t) est triangulaire De plus, à est continue, car toutes ses applications composantes (8)... le sont.

Done 3: (0,1] -> GLn(C) est un chemin continu entre $\delta(0) = I_n \text{ et } \delta(1) = B$.

Pour finir, on en déduit un chemin continu d'. (0,1) -> GLn(1) entre In er A par $\delta(t) = P^{-1}\delta(t)P$.

(C'est bien continu car GLn(C) est un groupe topologique)

Théorème: GLn(R) n'est pas connexe. Le cas n=1 est instancty ici ausi: $GL_1(IR)=IR^*$ et $IR^*=J-\infty, O[U]O, +\infty[$ est une riunion disjointe d'onverts non-vides. Dans le cas général, on se ramène à R* via le déterminant: det: GLn(IR) -> IR* est une application continue et surgichile, donc GLn(IR) = det (J-00,0[) U det (J0,+00[)

est une réunion digisible et ouverts non vides.

Thisume: SLn(C) est connexe par arcs.

C'est un corblaire du résultat sur GLn (I). Comment peut on utiliser ce résultat?

Scient A, B ∈ SLn (C), alors en particulier ce sont des étéments de GLn (C), donc il existe un chemin continu 8:[0,1] → GLn(C) over $\hat{\delta}(0) = A d \hat{\delta}(1) = B$.

Le problème est que 8 prends ses valeurs dans GLn(C) et pros

Considérons le chemin 8: [0,1] -> GLn(C) défini pour

8(t) = diag (del (8(t)) 1, 1, 1) 8(t) où ding (an,..., an) désigne la malice diagonale de caffe diagonaux an,..., an.

Alors & est continue (continuité des conposantes + produit continu) à valeurs dans $SL_n(\mathbb{C})$, et $\delta(0) = A$, $\delta(1) = B$.

Question: Est-ce que SLn(1R) est connexe?

Indication: SL, (IR) = {1} est connexe

· Si on venx inster la preuve pour GLy(C), il faut ici utiliser la réduction de Jordon réelle. les formes de Jordan possibles sont:

 $\begin{pmatrix} \lambda & O \\ O & 1 \end{pmatrix}$ $\begin{pmatrix} \pm 1 & 1 \\ O & \pm 1 \end{pmatrix}$ et $\pm R_0$ pour $\lambda \in \mathbb{C}^*$ et $\theta \in J_{0,1}T[$.

Exercices en lien direct: Exercice 7.

Exercices à regarder pour bundi: 9 à 12.

Compléments Vopologiques:

- D) Connexe pour arcs \Longrightarrow connexe Mais la réciprogne est fansse. Un contre exemple usuel est l'adhérence du graphe de $x \mapsto sin(\frac{1}{x})$ dans \mathbb{R}^2 .
- 2) Si J:X->Y est une application continue entre espaces Epologiques, et si X est connexe, alors J(X) est connexe.

Preuve: Par contraposée. Si J(X) n'est pas connexe, alors JU,V onverts non violes disjoints to $J(X) = U \sqcup V$. Alors $X = J^{-1}(U) \sqcup J^{-1}(V)$ est une récurion de deux onverts mon violes disjoints.

HMMA 114 12 octobere 5) Action de GL(V) sur les droites de V, géométie projective. à Description et propriétés de l'action K caps connulatif, Vespace rectoriel de din finie sur K. On note P(V) l'ensemble des <u>droites vectorielles</u> de V. sous-espaces rectificle de dimension y (On l'appelle cut ensemble l'espace projetif, on le projetivisé de V) Une telle drok est engendrée par un vedeur non nul $v \in V$ on la nok dans ce cas $[v] \in P(V)$. Le groupe GL(V) agit sur P(V) por: $\forall g \in GL(V)$, $\forall v \in V \neg \{0\}$, $g \cdot [v] = [g(v)]$. Proposition: Cete action est hansitive. Prenve: Soient vy et wy deux vecteurs non mels de V.
On vent tranver un automorphisme ge GL(V) to g.[v_1]=[w_1]. Il suffit d'outoir g(v,)=w, (mois ce n'est pos nécessaire). On peut compléter vy en une bosse (vy,..., vn) de V et we en une bose (way..., was) de V. L'unique application linéaire inversible g qui envoie la base (vz,..., vu) sur la bose (W1,..., Wn) de V solisfait bien g (V1) = W1, donc g [v1]=[w1]. lineaire, injectile car way-, va) libre $x_1v_1+...+x_nv_n \longmapsto x_1w_1+...+x_nw_n$ Surjective cor (w, -, wn) généralis

	Exercice: Déberminez, en fonction de la dimension de V, le plus grand
	entier m tel que l'action de GL(V) sur P(V) soit m-transitive.
	(c'est-à-dire que pour [vz],, [vm], [w], dans P(V), il
	existe un élément g E GL(V) to pour tout i compris entre 1 et m,
	g.[v:] = [w:]
	Pull 11 is 1 CLOS PUS 1 DUS VOR ZIGLNI) Ricipal
_	Proposition: L'action de GL(V) sur $P(V)$ n'est pas fidèle. $Volume = Z(GL(V))$ By $(P(V))$ Son noyau est $Z(GL(V))$.
	Jon noyau est $\angle(GL(V))$.
	Conséquence: L'action de PGL(V) sour P(V) include (par landison.) PGL(M) = GL(V) tendis ext fidèle (et ranjours transitive). Kor 4'= 1i
	Consegnence: L'action de PGL(V) sur P(V) incluite (par landison.) 2(GL(V)) avec
	ext fidele (et tonjours transitive).
	Preuse: On va monther: geGL(V) agit kindlement => g est une honothètie
	(càd 3X E K*, Yv EV, g(v)=Xv)
	ii) si g \in Z(GL(V)) alors g agit trivalement sur P(V). "un [Av] = [v]
	i) Lot g & GL(V) qui agri kivia Dement sur P(V).
	L'est-à-dire ∀[v] ∈ P(V), g·[v] = [v]
	(3(v))
	c'all équivalent à ∀v∈ V-{0}, g(v)∈ IK*v.
	Si v, we V-foz, alous 3x, n e 1K* to g(v)=xv
	g (w)= m w
	On a $g(v+w) = \lambda v + \mu w$.
	$ K^*(v+w) $ donc $\exists \sigma \in K^* = \sigma(v+w) = \sigma(v+w)$
	Remargh: si webv sont cliniaires, alors \=u (cor y est linéaire).
	· ·
	on peut donc supposor que vet w ne sont pos colinéaires.
	Ji v et w ne soul pas colinéaires et Av+ uw= ov+ow
	alou >=0=u.
	Charles a Victoria De 101
	On a bien monthé que g'est une homblité.
	En particular, geZ(GLIV)

391 a ZCIM) (mustan au (a re mic are a ZCIM)-thaustin
is Soit $g \in Z(GL(V))$ (supresons qu'en re vois pos que $Z(GL(V)) = \{homehabies}$
la l'assurde, sugresons qu'il existe veV to gave K*v.
Considérons un élément h & GL(V) tel que h(v) = v et h(g(v)) = v + g(v)
(c'est possible our vet g(v) sont linéairement indépendants pour hypothèse)
(donc on peut completer (v, g(v)) en une bode (v, g(v), vz,, vn)
et prendre h dont la malice dans cette base est
0 19 : 1 0 0 1 7 C(1) : 0:
On utilise manknant le fait que g E Z (GL(V)): ça implique
gh = hg, $er donc g(h(v)) = h(g(v))$.
$gh = hg, et donc g(h(v)) = h(g(v)).$ $ \qquad $ $g(v) \qquad V+g(v)$
On en déduit v=0, qui est une contradiction.
Le choix d'une bose de V fournir un isomorphisme entre Vel 1Kh
GL(V) et GLn (IK)
Four $V = \mathbb{K}^n$, on note $\mathbb{P}^{n-1}(\mathbb{K}) := \mathbb{P}(V)$ "l'aspose projectif de dimension $n-1$ sur \mathbb{K}^n ,
et les Lineals de P ⁿ⁻¹ (K) sont notés [2,:: 2n] pour la drote engendrée
per le vecleur $(x_1,, x_n) \in \mathbb{K}^n \{0\}.$
Proposition: Le stabilisateur de [4:0::0] e p ⁿ⁻¹ (K) sous l'action de GLn(K)
est le sous-groupe P formé des matrices triangulaires oupérieures par blocs
de la joine (51). Plus précisément
·
$P = \left\{ \left(\frac{\alpha_{N} \alpha_{N^2} \cdots \alpha_{N} n}{O A'} \right) \alpha_{N^2} \in \mathbb{R}^*, A' \in GL_{n-1}(\mathbb{R}), \alpha_{N^2} \in \mathbb{R}^* \right\}$
Preuse: Sugrasons are AEGLn(IK) sit tol and A. [1:0:07=[7:0:07]
Preuve: Sugrasons que $A \in GL_n(\mathbb{K})$ soit bel que $A \cdot [1:0:0] = [7:0:0]$. Cela équivant à $A(\frac{9}{2}) \in \mathbb{K}^*(\frac{9}{2})$ donc à ce que la 1ère colonne de A
10 de la laver (and) 145 a 5 1/4
sof de la forme (and) avec any EK*.

b) Aspects topologiques: topologie quotient

On va se contenter, dans ce paragraphe, d'introduire la noton typologique qui permet de mettre une topologie utile et naturelle sur les espaces impliques dans le paragraphe précident (IP (V) et PGL (V)).
On se place dans le cas où IK=IR ou C.

Définition (topologie quotient): Soit \times un espace topologique, et \Re une relation d'équivalence wir \times . On note \times \Re l'ensemble des classes d'équivalences et $p: \times \longrightarrow \times \Re$ la projection qui à $x \in \times$ assorie sa classe d'équivalence. Alors la topologie quotient sur \times / \Re est la topologie sur \times / \Re dont les ouverte sont les parties $U \subset \times / \Re$ velles que $p^{-1}(U)$ soit ouvert dans \times .

Exercice: Vérifier que sa défint bien une topologie.

Pour exemple, pour tout sons-groupe H d'un groupe topologique G, on a une topologie quotient our GH.

 $P^{n-1}(\mathbb{C}) = GL_n(\mathbb{C}) / \{(0 | *)\}$

Exercite: C^* agt sur C^h pas: $\lambda \cdot x = \lambda x$ pour $\lambda \in C^*$, $x \in C^h$.

Cela définit une relation d'équivalence sur C^h (dont les classes d'équivalences sont les orbrés).

Monther $P^{n-1}(C) \cong C^n + \{0\}_C^*$ et que la topologie quotient donnée par celte écruture coincide avec la précidenté.

(Or reviewdua desseus si on a le temps + l'occasion)

Proposition: Si Gest un groupe topologique, et Hest un sous-groupe distingué de G, alas G/H, muni de la topologie gnotient, est un groupe topologique. Cordlaine: Le gronpe PGLn (C) est un gronpe topologique pour la topologie quélient ELn(C) Rom: Si on a le temps et l'occasion, on soma une autre manione d'attaire la même topologie sour PGL. (C). Prenve: Il s'agit de verifier que le produit P: G/4 × G/4 -> G/4 el l'inverse I: G/4 -> G/4 sont des appliables continues. On a: le produit 4: G×G -> G et l'inverse I: G -> G pour G · la projetion p: G -> G/H est continue. Sit V un ouvert de G/H. Alors par définités de la topologie guddent, p-1(U) est onvert dans G. On a aussi I'(p'(U)) ower, car I est contine. P-1(P(I-1(P-1(U)))) On a $\overline{I}^{2}(U) = p(\overline{I}^{2}(p^{-1}(U)))$ don $\overline{I}^{2}(U)$ est ower $\overline{I}(p/A) = I(A) \quad (\text{définit à de } \overline{I})$ and $p(A) \in \overline{I}^{-1}(U) \quad \text{ssi} \quad A \in \overline{I}^{-1}(p^{-1}(U))$ A raisonnement pour le produit q. O Cos n=2, K= C (> en TD, Exercia, 13 of 14.

Chapite 2: Gronpes unitaires et orthogonoux

1) Formes Hermiliennes et groupes univoires

Soit V un espace rectaiel complexe de dimension finie n.

Définition: Une forme Hermitienne sur V est une application D: VxV-> t talle gre pour but LEC, u, v, weV, on a:

 $\frac{1}{2} \phi(\lambda u + v, w) = \frac{1}{2} \phi(u, w) + \phi(v, w)$ $\frac{1}{2} \frac{1}{2} \phi(\lambda u + v, w) = \frac{1}{2} \frac{1}{2} \phi(u, w) + \frac{1}{2} \frac{1}{2$

2) $\phi(u, \lambda v + w) = \lambda \phi(u, v) + \phi(u, w)$

3) $\phi(v,v) = \phi(r,u)$

Remarques: · Ce n'est pas une jourse blinéaire!

· 2+3 ⇒ 1

Définition: Une forme Herminime & est définie possitive si:

 $\forall u \in V, \quad \Phi(u,u) \in \mathbb{R}_+ \quad \text{et} \quad \Phi(u,u) = 0 \implies u = 0.$

Proposition (immidiale): Le groupe liviaire GL(V) agt sur l'ensemble des formes thermitéennes sur V pour pricomposition (in Pert la forme Hermilienne, geGL(V), u, v eV, $(g \cdot \phi)(u, v) = \phi(g^{-1}(u), g^{-1}(v))$

Définition: Soit d'une jour Hermitienre sur V. Le groupe unitaine $U(\phi)$ est le stablisateur de ϕ pour cette action:

 $U(\phi) = \{g \in GL(V) \mid g \cdot \phi = \phi \}$ = {geGL(V) | ~u,veV, \$\phi(\sqrt{g(u),\sqrt{g(v)}} = \phi(u,v)}

 $= \{g \in GL(V) \mid \forall u, v \in V, \quad \Phi(g(u), g(v)) = \Phi(u, v)\}$

Exemple /exercice: Si V = C de dimension 1? ϕ forme Hernihenne. $\phi(u,v) = \overline{u} \cdot v \cdot \phi(y,n)$ $\forall u,v \in C$

par les andulistres 1 et 2 de la defa

Condition 3:
$$\phi(u,v) = \overline{\phi(v,u)}$$
 ici $\overline{u}v b(v,s) = \overline{u}v \overline{\phi(v,s)}$
 $\Rightarrow \overline{\phi(v,s)} = \phi(v,s)$ dence $\phi(v,s) \in \mathbb{R}$.

Sure C , form therefore $c \Rightarrow un rich$
 $\varphi \Rightarrow \phi(v,s)$

De plus φ and diffine possible $c \Rightarrow v \Rightarrow \phi(v,s) \in \mathbb{R}^*$.

 $\psi(\psi) = \{ t \in CL_n(C) = C^* \mid (tu)tv \psi(v,s) = \overline{u}v \Rightarrow \phi(v,s) \quad \forall v,v \in C \}$
 $= \{ t \in C^* \mid |tt| = 1 \}$ is $\phi(v,s) \neq 0$.

Difinition: On agalle tour orthonomies define possible our V .

Difinition: On agalle tour orthonomies de (V, ψ) and tour (e_{s_1}, e_{s_1}) de $V \in V$
 $\psi(v,v) = \delta_{ij}$

On spelle syntication unhance an eliment de $V(\phi)$.

Thinks: Si $f \in V(\phi)$, also if exists and tour othersemic de (V, ψ) forms de vecture propres pour f , or bruke les unbase propres out module f .

Lemma: Si $f \in V(\phi)$, et λ extreme values propres de f , also $|\lambda| = 1$.

Previe: Sot u and vecture program propres de f , also $|\lambda| = 1$.

Previe: Sot u and vecture program f and f are f and f are f and f and f and f and f are f and f and f and f are f and f and f and f and f are f and f and f and f are f and f and f and f are f and f and f are f and f and f are f and f and f and f are f and f and f are f and f and f and f are f and f are f and f and

emme: Soit $f \in U(\Phi)$, et u un veckur propre pour f pour une valeur propre à quelcongre Alors u={veV | \$(u,v)=0} ext stable pour f. $(c'eN-a-dine: si \Phi(u,v)=0 alos \Phi(u,f(v))=0)$ Prense: Soit $v \in u^{\perp}$. On a $\Phi(u, j(w)) = \Phi(\frac{1}{2}j(u), j(w))$ (to car f & GL(V)) par segutinedité $=\frac{1}{2}\phi(f(u),f(v))$ cor $f \in U(\phi)$ $=\frac{1}{2}\phi(u,v)$ Cor veu Preuse du Lévième: Por récurrence sur n=dinV -> in = 1, dos gest la multipliation par >, avec |x/=1 (cas de la dimension déjà traité en exemple) → Supposons le résultat pronvé pour toute forme Hermittenne destint possible sur un espece vectoriel de dimension < n. - For Vun espace vectoriel de dimension n+1, mun d'une forme Hermiteune difinie positive Φ . For $f \in U(\Phi)$. Comme on haraille sur les complexes, of admet an mois une volun progre d et un sockur propre ents pour . Quille à multiplier par un réal non une, on purt supposer que $\Phi(e_{n+1}, e_{n+1}) = 1$.

Le sons-espoce $W := e_{n+1}^{\perp}$ est un sons-espoce de dimenson (n, thisle)par f (par le densième Cemme). De plus $\Phi_{W\times W}$ définit encore une some Hermilienne destrice possible our W, et flu EU(Dlury). On pent oppligner l'hypothère de récurrence pour bohair une boux orthonomée (e,,..,en) de W, formée de volveurs propres pour f/W La base (e,,..,en,en+1) formit la base orthonomée recherchée dans l'innié de Présière et les voleurs propres ont module 1 par le premier temme.

 \square

Exercice: Si & forme Henry librare dephie positive et u e V +0}, monther que dim (u+)= n.

3) Interprétation matricielle, groupe unitaire usuel

Soit V un c-ev de dimension n, ϕ jourse Hermsheuse sur V.

Chaisson $(e_{i_1...,e_n})$ me loose de V. On a: $\phi(z_i e_i + ... + z_n e_n, z_i' e_i + ... + z_n' e_n)$ $= \sum_{i,j=1}^{n} \phi(z_i e_{i_1}, z_j' e_j) = \sum_{i,j=1}^{n} \overline{z}_i z_i' \phi(e_{i_1} e_j)$

Notes J la matrice non dont les cofficients sont les $\Phi(e_i,e_j)$ Z le vectour colonne $\binom{z_1}{z_n}$, $Z' = \binom{z'_1}{z_{n'}}$ alors: $\Phi(z_1e_1+\cdots+z_ne_n, z'_1e_n+\cdots+z'_ne_n) = \overline{Z}^T J Z'$

Réciprognement certains choir de matrices Jeunettent de définir des Jemes Hermiliennes. On reviendre la dessus plus vard.

Four le noment, considérons le cos particulier $J=I_n$, qui carespond à la forme Hermitienne "Standard" run \mathbb{C}^n : $\phi((z_n, \neg z_n), (z_n', \neg z_n')) = \overset{\sim}{\succeq} \overline{z}; z_n'$

(qui est clairement définie possible: \$\frac{M}{1=1} |Z_i|^2 > 0 over égalité xxi Z_i=0 Vi)

Identifiers aussi les Jéments de GL(C") avec les mobices GLn(C). On robe U(n) CGLn(C) le sons-groupe identifié à U(O). C'ext le groupe unitaire usuel.

On aprelle malrices unibaires les déments de U(n).

Proposition: Les assertions suivantes sont équiplentes pour MEMn (C):
a) MeU(n)
b $M^*M = I_n$ (où $M^* = \overline{M}^T$ molice tronsconjuguée)
3 MM*= In
d) Mertinverable et M-1 = M+
e) les colonnes de M jouvent une bose ortronamée pour la journe Heuntheme Lijivie positive standard sur Ch.
Lifine postive standard sur Ch.

HMAM4 cours du 2 novembre U(n) groupe untire de la joune Herantreure standard sour Cn: $\Phi((z_{A_1}-_1z_{A_1}),(z_{A_1}'-_1z_{A_1}'))=\sum_{k=1}^{N}\bar{z}_kz_k'=\bar{z}^Tz'$ $\bar{z}_kZ=\begin{pmatrix}z_{A_1}\\\vdots\\z_{A_n}\end{pmatrix}$ $z'=\begin{pmatrix}z_{A_1}\\\vdots\\z_{A_n}\end{pmatrix}$ Proposition: Les assections suivantes sont équiplentes: a MeU(n) b) M*M=In (où M*= MT molice "adjoinle" on "transconjuguée") O M inversible et M=M* م (MM+= I e) les colonnes de M forment une bouse orthonormée pour P. On oppelle moltices unilaires les éléments de U(n). Trank: + b = c = d clair * Les cofficients de M*M sont les C:C; = $\Phi(C_i, C_j)$ on Chad la le chonne de M. Si M*M=In also $\phi(C_i,C_j)=\delta_{ij}$ also (C_{ij},C_n) forme une box orthonounée pour 4. Donc b) > e), et la réciprogre morche pored. Done b(=) e) * Engh, $M \in U(n) \iff \forall z, z' \in \mathbb{C}^n, \quad \Phi(Mz, Mz') = \Phi(z, z')$ \Leftrightarrow _____, $(MZ)^*MZ'=Z^*Z'$ \Rightarrow $Z^*M^*MZ' = Z^*Z'$ Cloir: MM=In → MEU(n). Réciprogrement, il suffit de considérer les Z, Z'parni les vecleurs de la base canonique de Capour oblenir $C_i^*C_i = c_i^*M^*Me_i = e_i^*e_i = S_{ij}$

Proposition: Si Me U(n), alors Ider (M) = 1.

donc M*M=In. Donc a) ⇒ b).

Définition: Le grospe spécial unibine SU(n) est le grape SLn(C) 11 U(n).

Remorgne: C'est un sou-groupe distingué de U/n) (le noyan de la restriction du déterminant à U(n).

Théoreme (réduction des motices unitaires)

Soit $U \in U(n)$ une motice unitaire. Alors l'exiète une motice unitaire.

PE U(n), et $\lambda_1, \ldots, \lambda_n$ des nombres complexes de module 1, to $U = P \operatorname{diag}(\lambda_1, \ldots, \lambda_n) P^{-1}$.

kemorgnes: * En perticulier, les classes de conjaison dans U(n) contiennent toutes un représentant diagonal.

* En pouliculier, tolk makice unitaire ext diagonalisable.

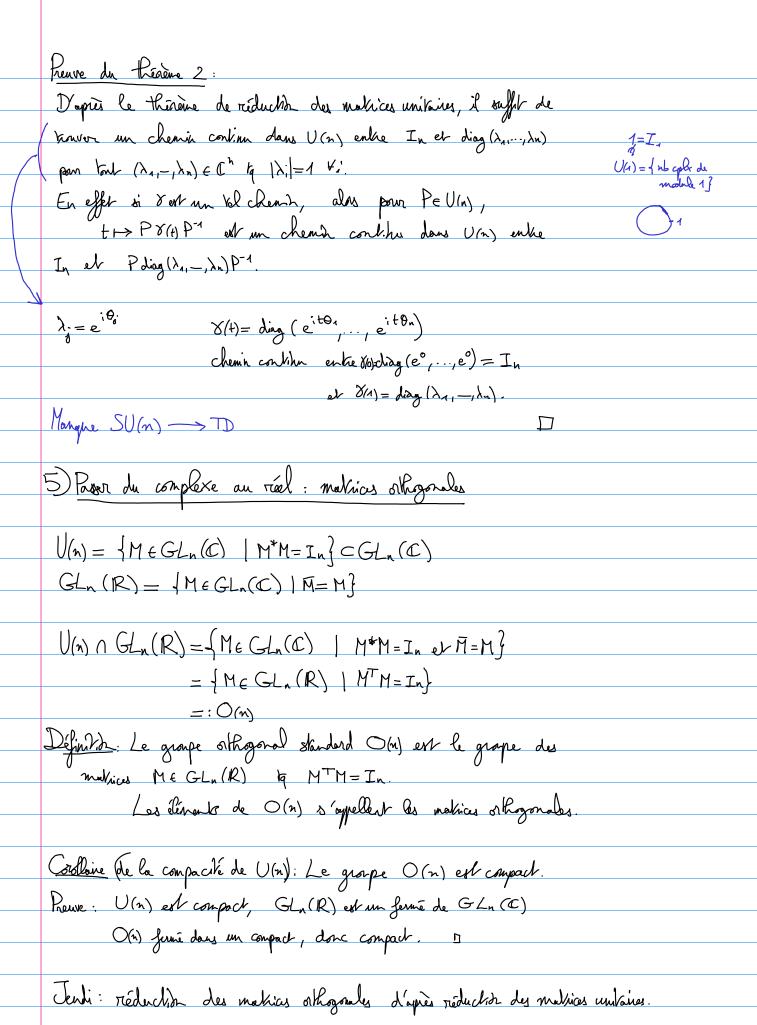
* diag (µ, _, µn) ∈ U(n) ⇐⇒ Ii; µ:=1 ∀i ⇐⇒ |ui|=1 ∀i.

* PEU(m) => P-1=P*

Prenve: C'est une conséquence directe du Théoreme de la section 2, appliqué à l'endanophème j= U et à \$ la journe Hermitienne standard sur C^h, qui est bien définie partile.

Sof B la bon de C^h (pour \$) journée de vecteur propres de U. Epar lettur 2

Sot P la matrice de passage de la base canonique à la base B.


Les vecteurs colonnes de P sort les éléments de B, donc PEU(n).

Als U=Pdiag(\(\lambda_{17},\lambda_{n}\)P^1 avec [\(\lambda_{i}|=1\) \(\forall i\).

4) Aspeck topologiques
~
Remarque: Um) est un grape topologique comme se-groupe de GLn (C).
Théoreme 1: Les gronpes U(n) et SU(n) sont compacts.
Théaine 2: Les groupes U(n) ch SU(n) sont connexes por arcs.
Es garages of the services per and servi
Prenue dy théreme 1: SU(n) = SLn(C) AU(n) est un jurai de U(n), donc
est compact in U(n) l'est.
Il soffit de monther que U(m) est fermé et borné.
War and the second seco
$V(n)$ est fermi: $M \in V(n) \subseteq M^*M = I_n$
donc $U(n) = g^{-1}(I_n)$ où $g: M_n(C) \longrightarrow M_n(C)$
$M \longrightarrow M^{\dagger}M$
(apliation continue our polynomiale)
donc U(n) est l'image inverse d'un fumé par une application
continue, donc U(n) est fermé,
·
Um) est borné:
Noting $Z \mapsto \ Z\ = \sqrt{Z^*Z}$ name standard our \mathbb{C}^n .
Considérare la norme multicielle associée:
M := sup MZ pour M & Ma(C)
J: Me U(n), also MZ 2 = (MZ)*MZ = Z*M*MZ = Z*Z = Z 2
, ,
= 1 is z =1

done $\|M\| = 1$.

Done U(n) ext borné,

5) Passer du complexe au récel
Raynel: O(n) = {MEGLn(IR) MTM = In} = GLn(R) (NU(n)
$U(n)$ compact \Rightarrow $O(n)$ compact.
U(n) ext connexe. Q: O(n) ext connexe?
rappel: $GL_n(R) = dut^{-1}(R^*) \sqcup det^{-1}(R^*)$ n'est pas connexe.
Q: 7? molice de déterminant négoly dans O(n)?
$\frac{p_{op}}{M_{c}}$: $\frac{q_{c}}{M_{c}}$ $\frac{q_{c}}$
Prevue: $M \in U(n)$ donc $\left[det(M) \right] = 1$. $M \in GL_n(IR)$ donc $det(M) \in IR$ I
McGL (IR) donc det (M) & IR I
Remarque: Une matrice d'agonale diag (t,,-,tn) est dons O(n) diag (t,,-,tn) diag (t,,-,tn)
$ron t_j = \pm 1 pour tout 1 \leqslant j \leqslant n diag(t_1^2, \dots, t_n^2)$
En particulier, diag (-1, 1,, 1) est dans O(n) 11 si t;=1 tz.
et son déferminant vout -1
(P: O(4) -> IR M -> doly M contiden
Trésiène: Le groupe Grologique O(n) n'est pou connexe. Prenje: O(n)= P^1(R+) LI P^1(IR+)
Ψ ψ μ dia (1,1,-,1)
Définition: Le groupe spécial oihogenel SO(n) en le groupe
$SO(n) = O(n) \cap SL_n(R) = SU(n) \cap GL_n(R) = U(n) \cap SL_n(R) \dots$
formé des makites orthogonales de dékuninant 1.
Roman Data: C'orte un las acomo distinci de Carlo (Parace la Pa
Kemorghe: C'est un sous-groupe distingué de O(n) (le noyan de la
restriction du déterminant.
Q: Est-a que So(n) est connexe? -> Réduction des matrices outhogenales?
and the second of the second o

^
Théreme [Riduchin des matrices orthogonales]
Pour toute makine athogonale M∈O(n), il existe:
Li NP N D G C C
· the making ormagohole P∈O(n) · denx entions nothwels p, q∈IN · un nombre lini d'angle 0, == Op∈ IR > T/2
· un nombre fin d'angles O1,-, OE ∈ R-TZ
tels que
PMP ⁻¹ = diag(Ip, -Iq, Ro ₁ ,, Ro _k) molice diagonale
por boos
1,
$=$ $\mathcal{R}_{\mathcal{O}_{1}}$
$= \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
Remorgnes: • p, q ainsi que les O; modulo T sout bien déterminée pour M
(in a land que as of mounts in some men recent porti
(via les valeurs propres et leurs multipliates) toutes de fame c ⁱ⁰ pour OCIR
· ·
· Enpuliadier, M & SO(n) ssi quel prin
(en général detr(M)=(-1)9)
Prenve dans le cos $n=1$: $O(1)=\{\pm 1\}$
Then we done be can $n=2$:
Commengers par le cas $M \in SO(2)$
D'oprès l'exercice de la dernière fois, $M = \begin{pmatrix} x & 3 \\ -x & x \end{pmatrix}$ avec $ x ^2 + \beta ^2 = 1$
car MESU(2). Or MEGLZ(IR) dac 2, BEIR.
$\alpha, \beta \in \mathbb{R}$, $\alpha^2 + \beta^2 = 1$ $\Longrightarrow \partial \in \mathbb{R}$ to $\alpha = cd\theta$, $\beta = sh\theta$.
donc M=Ropum OEIR.
Remargne: $\sin \theta = 0 \mod 2\pi$, $M = I_2$ ($p = 2$, $q = 0$)
si $\theta = \pi \mod 2\pi$, $M = -I_2$ $(p=0, q=2)$.

MEU(2), JUER, eight & SU(2)

Yor maintenant ME O(2) ~ SO(2).

Remorque: ici l'exercice de la deraiere fris ne danne raier d'abbressant,

Por contre, on connaît in élément (6-1) + O(2) - SO(2).

Alors $\binom{10}{0-1}$ $M \in SO(2)$ donc $M = \binom{40}{0-1}$ R_0 principle R.

$$M = \begin{pmatrix} \cos \theta & \sinh \theta \\ \sinh \theta & -\cos \theta \end{pmatrix}$$

On vent monther que M est conjuguée à (5-1) par une matrià de O(2)

(interpretation gérmilique: M'est la reflexit orthogonale par rapport à une

drate voctorbelle, (5-2) est la reflexion orthogonale por rapport à l'are

des obscisses. Pour passer d'une drake vedorielle à une autre dans IR?

il ouffit d'une rélation. Donc on peut chercher la mobice de changement

Le passage parni les malaires de rélation.)

Sol
$$\varphi \in \mathbb{R}$$
, $\mathcal{R}_{\varphi} \begin{pmatrix} 10 \\ 0-1 \end{pmatrix} \mathcal{R}_{-\varphi} = \begin{pmatrix} \cos \varphi & \sinh \varphi \\ -\sinh \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} 10 \\ 0-1 \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sinh \varphi \\ \sinh \varphi & \cos \varphi \end{pmatrix}$

$$= \begin{pmatrix} \cos \varphi & -nh \varphi \\ -nh \varphi & -\cos \varphi \end{pmatrix} \begin{pmatrix} \cos \varphi & -nh \varphi \\ snh \varphi & \cos \varphi \end{pmatrix}$$

$$= \begin{pmatrix} \cos^2\varphi - \sinh^2\varphi & -2\sinh\varphi\cos\varphi \\ -2\sin\varphi\cos\varphi & \sinh^2\varphi - \cos^2\varphi \end{pmatrix}$$

$$= \begin{pmatrix} \cos(2\varphi) & -\sin(2\varphi) \\ -\sinh(2\varphi) & -\cos(2\varphi) \end{pmatrix}$$

$$= \begin{pmatrix} cd (-2\varphi) & \lambda d (-2\varphi) \\ sin (-2\varphi) & -cd (-2\varphi) \end{pmatrix}$$

Done
$$M=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} R_0 = R_{-\frac{\theta}{2}}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} R_{\frac{\theta}{2}}$$

Preuve dans le as général: plus tord //

Trésene: Le grospe SO(n) est connexe.

```
Prense: Il suffit de constinire un chemin continu entre In et tonte
 mulia MESO(n)
 Par ridulion, M= P-1 diag (Ip, -Iq, Ro, ..., Rox)P avec q=2f pair.
 On pent auxi écrire M=P1 diag(Ip, RT, ..., RT, Ros, ..., Ros) D
 Considérors le chemin 8:[01] -> Ma(IR)
                                              t -> P<sup>-1</sup> diag(Ip, R<sub>tπ,...,</sub>R<sub>tπ</sub>, R<sub>tπ</sub>, R<sub>tθ</sub>, I..., R<sub>tθ</sub>) P
  C'est un chemin continu, à voleurs dans sorn, to
       \delta(0) = I_n \quad \text{if } \quad \gamma(1) = M.
Proposition: Une makice M ∈ Mn(IR) est orthogonale soi l'une du
                conditions suivantes est solisfaite:
                7) MTM=I"
                2) MM<sup>T</sup>= I,
                3) Me GL_ (R) & M-1 = MT
                4) les colonnes de M forment une b.o.n. de R' pour le
                             produit coloire standard sur IR":
                   X=\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \in \mathbb{R}^{n} Y=\begin{pmatrix} 3_{1} \\ \vdots \\ 3_{n} \end{pmatrix} \in \mathbb{R}^{n}
                                   \langle X,Y\rangle = X^TY = \sum_{i=1}^{n} x_i y_i
                 5) R^ ->R" est une isométric creaire de (R ", <.,...)
                                        (cà-d ∀X61R<sup>n</sup>, ||MX||<sup>2</sup>=||X||<sup>2</sup>
                                                           où ||X||<sup>2</sup>= <X,X> )
                  C) \forall x, y \in \mathbb{R}^{n}, \quad \langle mx, my \rangle = \langle x, y \rangle
Prense: exercice.
                           6)⇒5): (6)⇒5) en prenant Y=X
                              5) -> 6) la nome délenine le produit
                                             Saline por polarisation
                              \|X+Y\|^2 = \langle X+Y, X+Y \rangle = \langle X, X \rangle + 2 \langle X, Y \rangle + \langle Y, Y \rangle
                                    \langle x, y' \rangle = \frac{1}{2} \left( \|x + y\|^2 - \|x\|^2 - \|y\|^2 \right)
```

 $(X+Y)^*(X+Y) = X^*X + X^*Y + Y^*X + Y^*Y$ X*Y=Y*X mois en général X*Y = Y*X

Sonc le vir raisonnement ne marche par.

6) Les dévouls de 0(3) et so(3)

Par le thun de réduction, on a les cas suivants possibles pour MEO(3)

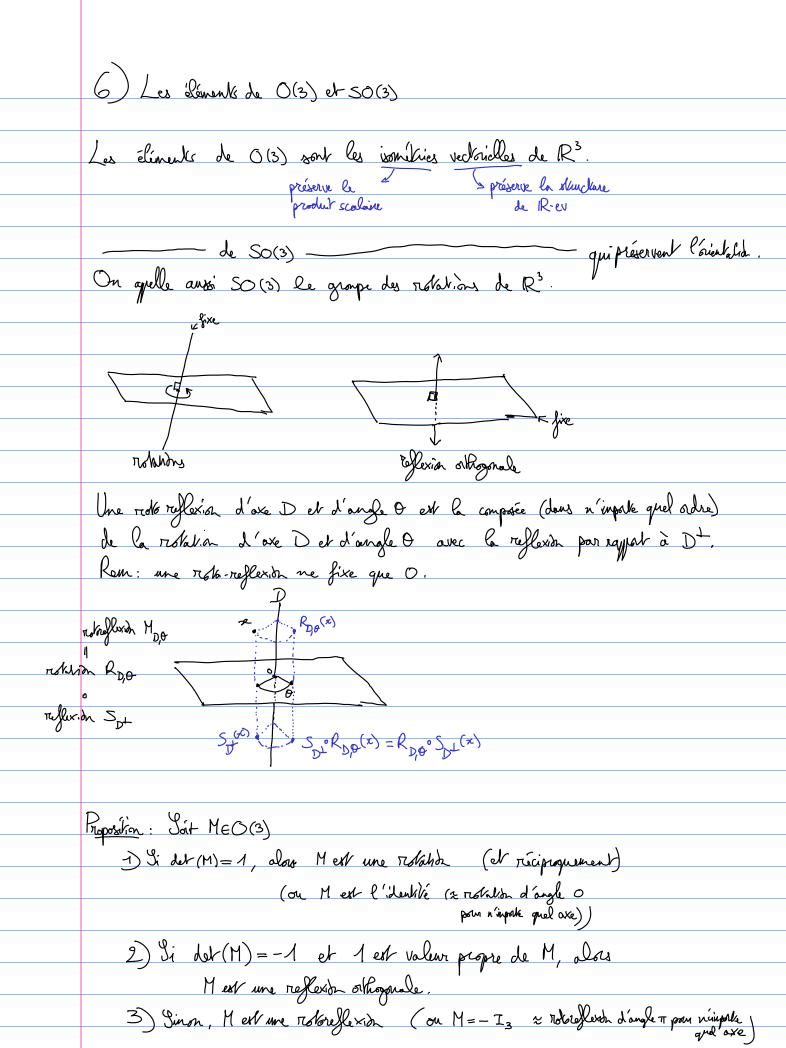
* P= 3 , M= I3

p=1, q=0) Μ conjugué à (100) ανες Θε]0,2π[

yembignemet: M est une robalism dans 1R3 d'axe le so espace propre pour le 40 1 d'angle O.

* P=2, 9=1, M conjuguée à (100)

: M est une reflexon obligante por regjort on plan des vodeurs propres pour


≠ P=0, q=1, M conjuguée à (-100)

:Mest une rate reflex.de

d'axe l'espace proprie pour la up -1 et d'angle o.

*9=3, M=-I3

M est la symétie certhale

Preuve du théorème de réduchée pour O(3):
M AAN
Thin de rieduched sur $M \iff l$ existe une bose orthonormée pour le produit scoloine standard de R^3 dans laquelle l'application. Cinàire $R^3 \longrightarrow 1R^3 \times 1R^$
de R3 dans laguelle l'application Cinàire R3 -> 1R3
X MX
s'écrit sous la forme diag (Ip, -Iq, Rox, r., Rox).
In polynôme coracléristique de M est réel cor M l'est.
evel de degré 3.
> MM a au mons une macine réelle
De plus, Ces voleurs propres de M ont module 1. (car MEU(3))
>> XM a 1 on -1 comme Macine.
Por ot un verteur monre tréel par une valeur monre (séelle) du M.
Soit v un vecteur propre (réel) pour une valeur propre (réelle) de M. Abre la décomposition $R^3 = Rv \oplus (Rv)^{\perp} $ est stable por M. (immédial, à écrise)
11/10 (11/10) 21 11/10 (11/10) 21 11/10 (11/10) 21 11/10 (11/10) 21 11/10 (11/10) 21 11/10 (11/10)
On peut chain une book orthonomée (e, ez, ez) adaptée à cette décomposité. Dans cette bose, l'opplication XI->MX s'écrit:
Dans cette base, l'opplication XI->MX s'écrit:
$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix} \text{ avec } \lambda = \pm 1 \text{ et } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(2)$
On a pravé le thome de réduction pour O(2), donc quite à maisser la
On a pravé le thome de réduction pour $O(2)$, donc quite à modifier la boar orthonomée (e2, e3), la modifie (ab) est de la forme Roon ($\frac{\pm 1}{0}$).
7) Preuve du thérème de réduction pour a quelconque.
Lemme: Soit VC C ⁿ un sons-espace reclariel complexe de dimension complexe égale à le,
stable par conjugaison (c-à-d XEV -> XEV). Alou VIR" est un sous-espace
rectoriel réed de dimension réelle égale à le.

Frence: On a $V = (V \cap \mathbb{R}^n) \oplus (V \cap \mathbb{R}^n)$. en effet: $\mathbb{R}^n \cap i\mathbb{R}^n = \{0\}$ $\cdot \forall x \in \bigvee_{t} x = \frac{x + \overline{x}}{2} + \frac{x - \overline{x}}{2}$ EV an Vest stable por conjugación. De plus, la multiplication par : est une application IR-linaire qui réalise un isonophisme entre VnR et VnilR (d'inverse la multipliant por -i). bonc dim(V) = 2 dim (Vn IRn). Prenve Jirole du thim de rédudion: McO(n). On se rapelle (comme dans le cas n=3) qu'il suffit de trouver une bore orthonomée de Rn dans laquelle l'application XI MX s'écrit diag (Ip, - Iq, Ro, ..., Rok). On raisonne pour récurrence forte. • Ji Madmet une volent propre roelle (nécessairement ± 1), alors on se ramène à l'hypothèse de rocurrence par la méthode que pour le cas n=3. · Sinon, soit vun vedeur propre complèxe de M, pour une valeur propre complèxe à \$1R. c-à-d vett vedeur propre de M pour la M=> = volen propre 5 + 2. En particulier, (v,v) est une jamille libre de C3. Par le lemme, P:=(Cv @ Cv) n R est un sons espace vecturel réel de dineasion 2 De plus, Per stable pur M: on a P= {zv+zv |zec} dM(zv+zv)=zHv+zMv=zAv+zXv EP. L'othogonal de Pett Male par M (car Mest une isomitie).

	Donc par hypothèse de récurrence appliquée à Mpt et par le cas n=2 dija moutré,
_	aplique à Mp, on dobent le thur.
_	8) es gronpes orthogonaux en général.
	De monière ginérale:
	· à toute journe Hermitienne Pour un C-ev V est associé son groupe untaine U(4)
	(son stabilisateur sons l'action de GL(V) sur les jounes hermilleunes)
	· à tante forme bilinéaire symétrique B sur un IK-espace vectoriel V est assorié son
_	groupe orthogonal O(B) (son skilisakur sous l'adish
	Le GL(V) sur les formes bilinéaires symétiques:
_	$(g.b)(x,y) := B(g^1x, g^1y)$
_	
	Kemargne: O(n):= stablisateur du produit scalaire standard sur 12 n
_	· Si (V,<:,:>) est un espace enclidien de dimension filite,
_	alos $O(\langle \cdot, \cdot \rangle) \simeq O(n)$.
_	· Or n'a pas betoin de caps particulier pour travailler avec les formes
_	Hinéaires symblique.
_	T 0
	Exemples:
	D'L'application C"×C"→ C définit toujous une forme plinéaire symétrique sur C".
	$(X,Y) \mapsto X'Y$
_	Le groupe (classique) O(C) "groupe orthogonal complexe" est le groupe
_	Le groupe (classique) On (C) "groupe orthogonal complexe" est le groupe orthogonal de cette forme bilinéaire symphogne.
_	$Exercice: \bullet décrire \mathcal{O}_2(\mathbb{C}) explicitement.$
	ett-ce que On (C) et correre?
	. Monther give $\mathcal{O}_n(\mathbb{C})$ n'est pas compact.

2) Remarque. Une forme bilivéaire symbhique est déterminée par la forme quadratique associée.

(phisairà: B(X+Y, X+Y) = B(X,X) + B(Y,Y) + 2 B(X,Y))

Le grape sithogonal indéfini O(p,q) est le grompe orthogonal associé à la forme quadratique (x1,..., xp+q) > \frac{1}{2} \tau^2 \cdot - \frac{1}{2} \tau^2_{p+1} \tau \text{sur R}^2.

Exorcice: O(p,q) n'est pas compact pour p, q \(\deta \)

O(p,q) = \{M \in GL_n(R) | M^T_{Im} M = J_{p,q} \}

où J_{p,q} = diag (I_p, I_q).

Si on considère la în forme quadratique sur C², also le grape orthogonal associé est isomosphe à O_n(C).

Fin du Chapitre 2.

Joh fine person dut melics Joh fine person dut melics MT=M Chaphe 3: Décomposition plane et exponentielle 1) Makricas hermiliennes et anti-humiliennes Définition: Une malice $M \in \mathcal{H}_n(\mathbb{C})$ est herembenne si $M^* = M$. (rappel M*= \overline{M}^T) Remarquel Exemple: • n=1, M=(z) & M160) est hermbenne soi ==z soi z & R · Une moltice diagonale et Resurvienne su ves coefficiente sont reels · Les cafficients diagonaix d'une matrice hermitéenne quelconque sont réels. • n=2, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ eN hermineme of $\begin{cases} a, d \in \mathbb{R} \\ b = \overline{c} \end{cases}$ On put donc l'écrire en terme de gnobe cofficients réels 0, B, 8, 8: $M = \begin{pmatrix} \alpha & \beta + i \gamma \\ \beta - i \gamma & s \end{pmatrix}$ • Si M est hermilienne, alors $\mathbb{C}^n \times \mathbb{C}^n \xrightarrow{\varphi} \mathbb{C}$ Ifinit une foune hermilienne $(\times, \times) \longmapsto \times^* M \times \mathbb{C}^n$. $\Psi(\lambda X + Y, Z) = \overline{\lambda} \Psi(x, Z) + \Psi(y, Z)$ $\Psi(X,\lambda Y+Z) = \lambda \Psi(X,Y) + \Psi(X,Z)$ $\Psi(X,Y) = \overline{\Psi(Y,X)}$ $\widehat{\varphi(x,x)}$ $\frac{\varphi(\overline{x}x)}{(x^*My)^T = y^T M^T \overline{x} = y^T M^T \overline{x} = y^T M^T \overline{x} = y^T M^T \overline{x}}$ · Récipropunent si P: V×V -> C ext une forme hourthenne sur un C-ev de din fine, la mobile associée via le chair d'une bose de V est une mobile horuntienne. Définition: Une matrice $M \in M_n(\mathbb{C})$ est out,-hermiteure si $M^* = -M$. Remarques et exemple: n=1, motrice out. hermilieure \iff invegione que. n=2, $M=\binom{ab}{cd}=-M^*$ \iff $\binom{a,b}{b}=-\overline{c}$

en kuns de ceffs réels $\alpha, \beta, \gamma, \delta, M = \begin{pmatrix} i\alpha & \beta + i\gamma \\ -\beta + i\gamma & i\delta \end{pmatrix}$

· Les cass diagonanx d'une matrice autilieure sont dans ilR. NoValidn: On noble Hn l'ensemble des molices hermitennes dans My (C).

Attn - - - - anti hermitennes - - - -Proposition: i) Hen et AHn sont des sons espaces vectoriels récels de Mn (C) ~1R2n2. i) ce ne sont pos des ser complexes de Mn(C). iii) Ils fournissent une décomposition en somme directe: Mu(C) = Hn @ AHn. iv) Los dinensoles de In et AHn sout igales à n2. Prunk: Sor te C, M, N & M, (C). Also (tM+N) = EM+N* → xi t ∈ R, (FM+N) = t H + + N* donc Ha w AHa sour les seu réels

Ker (M→ M-M*) ~ Ker (M→ M+M*) Si Me Hn Ath, also M=M*=-M donc M=0, d'ai Hn AHn={0}. Ji MEHn, las (iM) = -iM* = -iM, donc iMEAHn, donc iM&Hn Donc Hn n'est pous un seu complère. En fait, la multipliation par : est un isomorphisme IR-linéaire (d'inverse la multipliation par -:) cathe H_n et AH_n . En particulier, d in $H_n = d$ in AH_n . G: $M \in M_n(\mathbb{C})$, also $M = \frac{M+M^*}{2} + \frac{M-M^*}{2}$, dence $M_n(\mathbb{C}) = H_n \oplus AH_n$.

Donc $2n^2 = \dim M_n(\mathbb{C}) = \dim H_n + \dim AH_n = 2 \dim H_n = 2 \dim AH_n$. Remorgne: On pourroit auxi déterminer des boyes explicites de Hn et AHn For exemple pour n=2, $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ forme une loose de H_2

((î°), (°°), (°°)), (°°)) forme une bose de AHZ

On note (X,Y) = X*Y la forme hermbenne standard sur C".

Proposition: Si H&Mn(C) est horantiane, also pour Kont X,Y & Ch, <X, HY> = <HX, Y>.

Prenve: On a $\langle HX,Y \rangle = (HX)^{*}Y$ $= X^{*}H^{*}Y$ $= X^{*}HY$ can $H \in H_{n}$ $= \langle X, HY \rangle$

Théorème (de reidudish des makies hermishemes): Soit $H \in H_n$, also, il existe une makie unidoire $P \in U(n)$ et une makie diagonale reille D telle que H = P DP.

Rem: PEV(n)
P=Pt.

Enonce équiplent: l'existe une bon (pour la frue hermilieure standard)

formée de vecteurs propres de H, et les voleire propres sont reelles.

Évance Egyp Valent: Si V C- ev de dim fishe

Via le chax

l'sprime hermitienne défisie positive

d'une bon $f \in End(V)$ by $\forall x, y \in V$ f(f(x), y) = f(x, f(y))pour f.

Au si l'existe une bon de V (pour f(y)) formée

de vertiens propres pour f, et les valeurs propres sont réalles.

La preuve du thérème de réduction des motions hermiliernes sont le même schema que celle pour les motices unhaires, pour récurrence sur la dimension. Elle ett si identique mobile les deux Cemmes modifiés soubants.

Lemme: Les voleurs propres d'une nothice hemitienne sont réelles.
Prense: Soit is one volum propre pour HeH_n , et X on vector page pour λ . Aby $\langle HX_1X \rangle = \langle \chi X_1 \rangle = \overline{\chi} \langle \chi \chi \rangle$
$\forall x_1 x_2 = \langle x_1 x_2 \rangle = \langle x_1 x_2 \rangle = \langle x_1 x_2 \rangle$
11
$\langle X, HX \rangle = \langle X, XX \rangle = \lambda \langle X, X \rangle$ $Dac \overline{\lambda} = \lambda$
$Dac \lambda = \lambda$
Lemme: Soit X un vecteur propre pour HEHn, alos XI ext Mable pont.
orthogonal pour raggest à <:,->
$= \{ y \in \mathbb{C}^n \mid X^* y = 0 \}$
$(O_n a \mathbb{C} \times \oplus \times^{\perp} = \mathbb{C}^n)$
Parish Color YCXI
Premie: Soit YEX ^L , on a: <x, hy=""> = <hx, y=""> = <xx, y=""> = \times <x, y=""> = O D</x,></xx,></hx,></x,>
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
On 18:
On ullisera aussi un résultat de réduction simultanée.
₽ , (0 ,
Théorème: Soient A, et Az deux molhices hermitiernes qui commutent.
Alors il existe une malice unitaire P et deux matrices diagonalis rulles
Diel De Kolles gre A=PD,P" et Az=PD,P".
Prenve: Le Cum de réduction appliqué à An donne une bon de vecteurs propres pour An. En pout calier, C'est la somme directe orthogonale des
pour An. En particulier, C' est la somme directe orthograle du
sons espaces propries types, Ep de Ay.
De it C'est la somme directe oilàgonale des sous-espaces piques Fir., Fs de Az
Comme A, et A, communent. A, laisse Walshe Por sons-espaces propries de A.
Comme A_1 et A_2 commutent, A_2 laisse that e_1 consequences propres de A_1 . $E_1 = (E_1 \cap E_1) \oplus \cdots \oplus (E_1 \cap E_n) \text{etc}$
/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/

 \mathcal{D}_{onc} $\mathcal{C}' = \mathcal{E}_{1} \oplus \mathcal{E}_{2} \oplus \cdots \oplus \mathcal{E}_{n}$ $\mathbb{C}^{n} = (E_{\lambda} \cap F_{\lambda}) + (E_{\lambda} \cap F_{\lambda}) + \dots + (E_{\lambda} \cap F_{\lambda$ = (E; nF;) En prenant une bon adaptée à celle décomposition, on obtient une bon Jounée de veckurs proprie communs à A, et Az.

3) Racines carrées de mobices hermitiennes definies positives
Rayrel: Hnatria hormsteune & HEHn & H*= H & (X, Y) -> X*HY. Jrune Rormstierne
frune Rorminicane
Définhère: Soit HeHm. On dit que Host postive si $\forall x \in \mathbb{C}^n$, $x^*HX > 0$. On dit que Host définie postible si $\forall x \in \mathbb{C}^n \setminus \{0\}$, $x^*HX > 0$.
On dit que Hest définie partise si $\forall x \in \mathbb{C}^n \setminus \{0\}$, $x^*H \times > 0$.
On note H_n^+ l'ensemble des mollices hermitiennes posities. H>0
H++ definier positives. \ I+>0
Remurque: H >0 sir la forme hermilieure sur C'associée à H est définie partire.
ı
Exemples: Q l'identité In EHn++
$(\stackrel{1}{\circ} \stackrel{0}{\circ}) \in H_n^+ \setminus H_n^{++} : \times = (\stackrel{x_1}{z_2}) \qquad \times (\stackrel{1}{\circ} \stackrel{0}{\circ}) \times = x_1 ^2 \geqslant 0 = 0 \text{ prus } (\stackrel{0}{\circ}) \neq 0.$
$ (\begin{array}{ccc} (\begin{array}{ccc} 1 & 0 \end{array}) \notin H_n^+ & \times^* (\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}) \times = (\overline{z}_1 & \overline{z}_2) (\begin{array}{ccc} z_1 & \overline{z}_2 \\ z_1 & z_2 \end{array}) = \overline{z}_1 z_1 + \overline{z}_2 z_1 = 2 \operatorname{Re}(z_1 z_1 z_2) < 0 $
pon ex pour (-1)
Proposition: Soit HeHn. Alors HeH! soi toutes ses valours propres sout positives.
Et HEH++ strictement possibles.
· · · · · · · · · · · · · · · · · · ·
Prense: « Suproon que 2 est une volur propre de H, et X un vockeur propre associé.
$X^* + X = X^* (X) = X X^* X \qquad \text{or} X^* X = \sum_{i=1}^{n} x_i ^2 > 0 \text{if} X \neq 0$
Done HeHnt -> >>0
$H \in \mathcal{H}_{+}^{++} \Rightarrow \lambda > 0$
· Réciprognement, organous que toutes les voleurs propos de 4 sont pontives.
POPULATION OF THE PROPERTY OF
Par le Réaine de réduction des matrias hermitiennes. H=PDP avec PEU(n)
Pour le Réagne de réduction des matrices hormatiennes, $H = P^TDP$ avec $P \in U(n)$ et D matrixe diagraphe à coefficiente diagramment régle extité. $D = diag(\lambda,, \lambda_n)$ avec $\lambda \in R$.
Pour le Réaine de réduction des multipes hormétiennes, $H=P^{-1}DP$ avec $P\in U(n)$ et D multipe diagonale à coefficiente diagonaux réals possible, $D=\text{diag}(\lambda_1,,\lambda_n)$ avec $\lambda_j\in \mathbb{R}_+$. Pour vout $Y\in C^n$, $Y^*DY=\overset{\sim}{\Sigma}\lambda_j y_j ^2>0$.

P=P can PEUlaj Pour H et XEC", $X_*HX = (X_*D)D(DX)$ par le raisonnement ci-duttes $= (PX)^*D(PX) > 0$ onec Y=PX. (in raisonnement pour HEHA+) Conflaire: . Si HeH+, also tr(H)>0 et der(H)>0 · 9: He Ht, also tr(H)>0 et der(H)>0 · Soft HEHT, alow HEHT soi der (4) ±0. (càd Hn+= HnOGLn(C)) Théoreme (racines carrées de notices herminenses positives): Soit $H \in H_n^+$, alors if existe une unique motive $P \in H_n^+$ telle que $P^2 = H$. De plus si $H \in H_n^{++}$, alors $P \in H_n^{++}$. On notera VH:=P cette voiche corrée dans Hr. Altention: en général, une notice adnot beaucoup de Macines courrées distinctes. Pour example, $\sqrt{I_2} = I_2$, mois tolles les motices Ronivantes vérifient $R^2 = I_2$: $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$,... (ily en a me ilylike). thenve: Sugressors que PEHnt solvisfant P=H. On a $PH = PP^2 = P^3 = P^2P = HP$ done Het P commutant. for réduction simultanée, il existe une bose (e1,-1en) de Ch formée de vectours propos communs à Pet II. Note λ_j , $\mu_j \in \mathbb{R} + \mathbb{I}_q$ He $_j = \lambda_j e_j$. Pe $_j = \mu_j e_j$. alos $\lambda_i e_i = He_i = PPe_i = \mu_i Pe_i = \mu_i^2 e_i$ done $u_i^2 = \lambda_i$. Or uj & R+, done uj = Vzj. Tur le sons-espace propre ossorié à une valeur propre 2 de H, Pagil comme l'hondhetion XIIIX. Ça me determine P de manière unique our chaque sons-espace propre de H, donc sur C' qui ext la somme directe de ces sons-espaces propres.

Kéciprogrement, is Pert défini par la propriété ci-dessus, also PEHn+et P2=H. Eigh is $H \in H_n^{++}$, also $del(H) \neq 0$, donc $(del(P))^2 = del(H) \neq 0$, donc $del(P) \neq 0$, donc $P \in H_n^{++}$. 4) Décomposition polaine de GLn(C). Théreme (Décomposition polaire): Soit $A \in GL_n(\mathbb{C})$. Il existe un unique couple (U,P) tel que $U \in U(n)$, $P \in H_n^{++}$ et A = UP. Remorghe: Pour n=1, on a $GL_1(\mathbb{C})=\mathbb{C}^*$, $H_1^{++}=|\mathbb{R}^+_+|$ et $V(1)=\{z\in\mathbb{C}\;|z|=1\}$ Pom a ∈ C+, ∃.(u,p) ∈ U(1) × 1R+ + + + a = up; (en mobil u=e^{id}, p=t, a=re^{id} condamning polaries dans () en effet, p = |up| = |a| et $u = \frac{a}{|a|} = \frac{a}{p}$ Prenue: Commengons pour l'unicité. Soient UEU(n), PEHn+ kg A=UP. $A^*A = (UP)^*UP = P^*U^*UP$ $A^*A = (UP)^*UP = P^*U^*UP$ $= P^*P$ $= P^2 \qquad \text{for PeHn}$ Or A*A est une matrice herm l'enne déplie problès: (A*A)* = A* A** = A*A Lone A*A = H, si $X \in \mathbb{C}^{n} \setminus \{0\}$, $X^{*}A^{*}A \times = (A \times)^{*}(A \times) > 0$ or A inversible, done $A \times \in \mathbb{C}^{n} \setminus \{0\}$ dac A+AEH++, On en déduit, par le thésième de la section précédente, que P=\A*A' est l'unigne racine carrée de A#A dans Hn++. Et U=AP^1 donc Vest aussi déterminée de mandre unique. tour l'existence, il just vérifier que P:= VA*A et U:= A(VA*A) 1 marchent, c'estadine A=UP, PEH++ et U∈ U(n) évident consignence du thu picédent On calcule U*V = (AP-1)*AP-1 = (P-1)*A*AP-1 = (P+)-1 P2 P-1 2 P= P con Peth $= I_n$

	Thereine (decompositor poloise topologique): L'appliable $\Phi: U(n) \times H_n^{++} \longrightarrow GL_n(C)$ (U, P) \longmapsto UP
	ell un homéomorphisme. (pour les topologie induites de U(n) < Motres (C) = C" H++ GLn(C)
	Prense: Par le thésième du dicompositée polaire précédent, & est bijeche. De plus & est continue can le produit de molicies est continu. The reste à monther que son inverse & est continue.
	Par la prenve de la disonposité polaire, $\Phi^{-1}(A) = (U,P)$ avec $P = VA^{\dagger}A^{\dagger}$ et $U = AP^{-1}$. Il suffr donc de montrer que la rache carrée $V = H_n^{++} \longrightarrow H_n^{++}$ est continue.
	On morke ceci por cribère signealiel de continuère. Soit (Bk) une veule dans H_n^{++} , qui converge vetr $C \in H_n^{++}$. On veul my l'im $VBR = VC$.
Lemme:	: La suite (B_k) est bornée, donc la suite $(\overline{B_k})$ est bornée, \rightarrow voir en \overline{D}
	Donc la suite (Bh) est dans un compoct, donc elle converge soi elle adnet une unigne valeur d'adhérere. (c'est un régullet standard de typlogre) exercice
_emme:	Considérans une sous-jule convergente (\overline{B}_k) , qui converge vers une link o . Hit est fermé. \rightarrow en TD
	Done Q \(\text{H}^+, \) For continuté du produit de notice, l'in \(B_{\mathbb{R}} := \text{Cin (B_{\mathbb{R}})^2} = \text{Q}^2, et \(C \in \text{H}^{\mathbb{H}^+}, \) Jone \(\text{Q} = \text{VC} \) par unialé dans le trim on les racines carrées dans \(\text{H}^+, \)
	Donc (B) converge very VC. Donc V. est une application continue. []

Décomposition plaire réelle
Rayrel: $M_n(IR) = \{M \in M_n(C) : \overline{M} = M\}$
$O(n) = U(n) \cap M_n(\mathbb{R})$
. M (C)
Définition: Une molice M et symétrique réelle si M=M et M=M. On nôte 5, l'ensemble des modrices symétriques réelles. Romatrons : 5 - H OM (R)
On note 5, l'ensemble du matrices symétriques réelles.
De mêne, on note S+ = H+ n Mn (IR) l'ensemble des malices symétriques cells
De nême, on note $S_n^+ = H_n^+ \cap M_n(IR)$ l'ensemble des molices symétriques reelles possibiles, et $S_n^{++} = H_n^{++} \cap M_n(IR)$ l'ensemble des molices symétriques réelles définies
1 <i>3</i> 555 <i>V</i> 1387 <i>S</i>
On se rapelle que $M \in S_n^{++}$ défini un produit valaire (enclidies) son \mathbb{R}^n par l'aplication $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ $(X,Y) \longmapsto X^T MY$
par l'apliable IR" × IR" -> R
$(\times,Y) \longmapsto X^{T} M Y$
Enfin, on note $AS_n = AH_n \cap M_n(\mathbb{R})$ l'ensemble des melices autisymétiques roelles.
Proposition: On a $H_n(\mathbb{R}) = S_n \oplus AS_n$ et $\dim(S_n) = \frac{n(n+1)}{2}$ (donc $\dim(AS_n) = \frac{n(n-1)}{2}$).
Prenve: Ca décale immédiatement de Mn (C) = Hn DAHn pour la somme directe.
Prenve: Sa décorde immédialement de $M_n(C) = H_n \oplus AH_n$ pour la somme directe. Pour la dimension, le plus simple est de donner une boese de S_n : les $E_{i,i}$ pour $1 \le i \le n$ et les $E_{i,j} + E_{j,i}$ pour $1 \le i < j \le n$. n $1 + 2 + \dots + (n-1) = \frac{n(n-1)}{2}$
les Ei, pour 1 si sn et les Ei, j+Eji pour 1 si sj n
$n 1+2+\cdots+(n-1)=\frac{n(n-1)}{2}$
Thirteme (Racino; corrées de motrices symétriques récelles postries):
Théviene (Racines corrées de motrices symétriques réelles posthies): Soir $M \in S_n^+$. Alors $\exists ! \ P \in S_n^+$ to $P^2 = M$. De plus, in $M \in S_n^{++}$, alors $P \in S_n^{++}$.
y y y y y y y y y y y y y y y y y y y
Prende: MEStath donc J. PEHnt & PZ=M. On vent my PESt; eP=P.

On a $(\bar{P})^* = \bar{P}^* = \bar{P}$ forc \bar{P} eth.

Petty

	Les voleurs propres de Poortrælles, donc ce sont les nomes que celles de P. Elles sont donc poorties (car PEHt), donc PEHt.
	Elles sont donc possibles (car PEHt), donc PEHt.
	On colcule $P^2 = (P^2) = \overline{M} = M$ cor $M \in M_n(\mathbb{R})$.
	Par unicle de la rocine courée hermilienne positie, or a P=P.
•	Théorème (décomposition polaire réelle): L'application D: O(n) x Sn+ -> GLn(IR)
	ext un honéomorphisme.
	Premse: Por définition, d'ext la restriction à O(n) x Sn+c U(n) x Hn++ Le
	l'homeomorphisme donné par la décompartion polaire complexe.
	Il s'agit donc d'un homéomorphisme sur son image (pour les topologies induites).
	Is just verifier que In(P) = GLn(IK).
	L'inclusion In(4) CGLn(1R) est immédiale.
	L'autre inclusion et une consignace de l'expression explicit de la décomposition plaise:
	sor A ∈ GLn(IR) ⊂ GLn(C), alors P:= VA*A er U:= AP¹ dons la dismpsilion
	poloine complexe. Ici A*A=ATA & S++=H++ Mu(R) donc P& S++, et
	$V \in U(n) \cap M_n(IR) = O(n)$. Donc $A = UP \in In(\Phi)$.
	Remorgne: On pourrair aussi vont monther en réel sans utiliser le cons complexe, en instrut ce qu'en a fair en complexe. Il fant pour sa:
	en imbut ce qu'en a fout en complexe. It fout four sa:
	Thérene (Réduction des moltices symbiques réelles): Yoir $M \in S_n$. Alors il existe une moltice othogonale $P \in O(N)$ et une moltice disymale réelle D to $M = P^1DP = P^TDP$.
	exile une maline otherwale PEO(n) et une malice disposale rédle D to
	$M = P^{T}DP = P^{T}DP.$
	Prense: en exorcice. (inniber une prense de réduchite déja faite).
	1 0 -

On
$$N_{n}(\mathbb{C})$$
 $\longrightarrow M_{n}(\mathbb{C})$
 $A \longrightarrow \sum_{\dot{p}=0}^{k} \frac{A^{\dot{p}}}{\dot{p}!}$

Ce sont les sommes partiolles d'une série (à valeur dans $M_n(C)$) de teune général $\frac{A^{\delta}}{\delta!}$, dont on note $\exp(A)$ so somme si elle est convergente.

Proposition: La série converge pour tout $A \in M_n(\mathcal{K})$. De plus, en restricted à n'importe guel compact de $M_n(\mathcal{K})$, la fonction exp ainsi définie est une limbe unjone de (fé).

Prense: Fixon une nouve sons-multipliable III sur Mn(C), par exemple la nouve mahiaelle assicé à la nome hermhenne sur Ch.

Montions d'abord que la série converge.

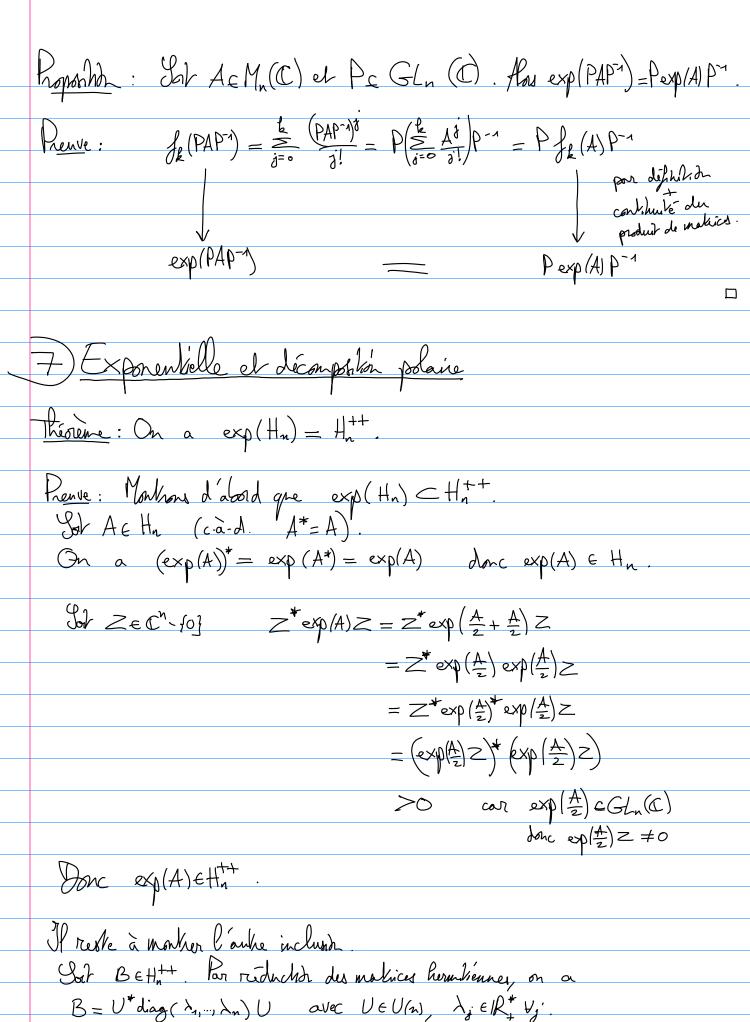
Montions d'abord que la série converge.

On a, pour bont
$$m \in \mathbb{N}$$
,
$$\|f_p(A) - f_m(A)\| = \|\frac{2}{k} + \frac{A^k}{k!}\| \leq \frac{1}{k!} \|\frac{A^k}{k!}\| \leq \frac{1}{k!}\| \frac{A^k}{k!}\| \leq \frac{1}{k!}\|$$

La révie roelle de terme général (MAM) le converge vers exp(MAM), donc la soute de ses sommes particles est de Condry.

Done l'higalité $\mathfrak D$ montré que la suite des $f_{\mathfrak p}(A)$ est de Cauchy duns $M_n(C)$ (qui est complet) donc converge (vers exp(A) par définition).

Four la convergence informe, plaçons nons sur un compact $K \subset M_a(C)$. Un tel ensemble et borné. Soit MEIR to MANISM pour bat AEK. On a, per porsonge à la limbe (l->+00) dans &,


$$\| \exp(A) - f_{m-1}(A) \| \leq \frac{+\infty}{\mathbb{E}_{=m}} \frac{\|A\|^{k}}{k!} \leq \frac{+\infty}{\mathbb{E}_{=m}} \frac{\mathbb{M}^{k}}{k!} = \exp(\mathbb{M}) - \sum_{k=0}^{m-1} \frac{\mathbb{M}^{k}}{k!}$$

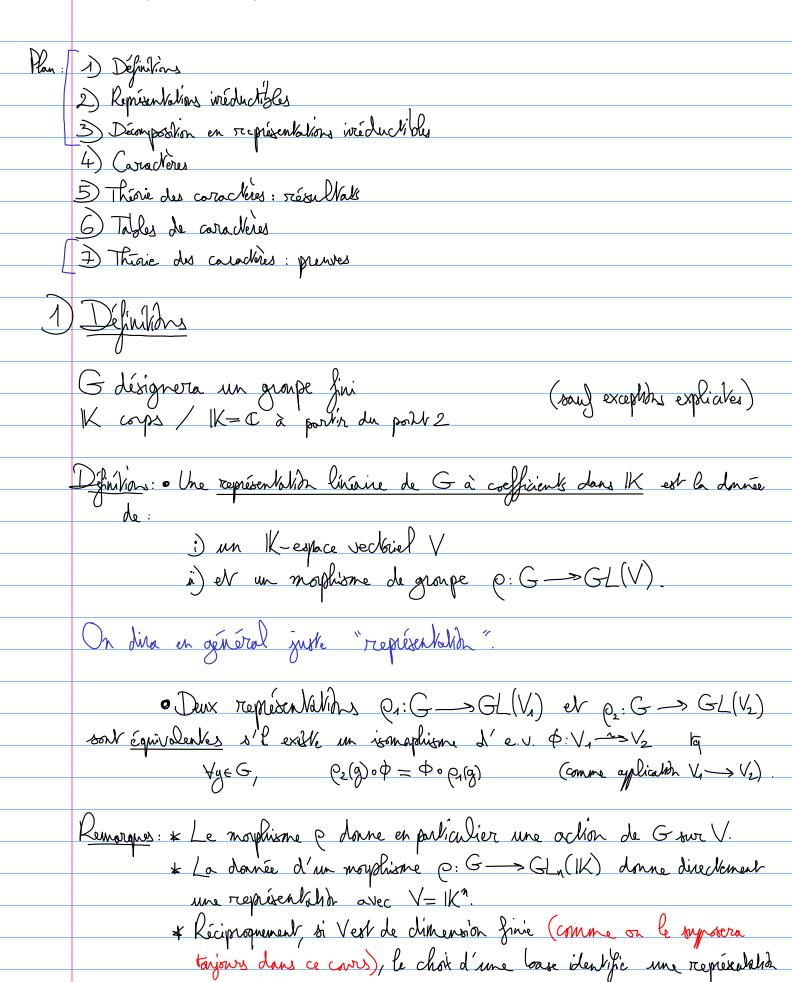
Cette inégalité implique la convergence uniforme de formers exp son K Corolloine: La fondion exp: Mn (a) -> Mn (a) est continue. (Preuve: Une linde unforme de fonctions continue est continue.

Les forctions f_B sont polynomials donc continues. $M_n(C) = \bigcup_{M \in \mathbb{R}^+_+} B_{M-1}(O, M)$ résunon de compacts. traposition: S. A et B commutent, alors exp(A+B) = exp(A) exp(B) Prenve: On considere le produit de Cauchy des deux séries définiséent $\exp(A)$ et $\exp(B)$. So somme portible est $U_m := \left(\frac{\sum_{k=0}^{\infty} \frac{A^k}{k!}}{k!}\right) \left(\frac{\sum_{k=0}^{\infty} \frac{B^k}{k!}}{k!}\right)$ $= \sum_{k,\ell=0}^{\infty} \frac{A^{k} \ell^{k}}{k! \ell!}$ La somme partielle de la série définissant exp (A+B) est: por binance de Newton, comme AB = BA $\sqrt{m} := \sum_{q=0}^{m} \frac{(A+B)^q}{q!}$ $= \sum_{q=0}^{m} \sum_{p=0}^{q} \frac{1}{q!} \binom{q}{p} A^{p} B^{q-p}$ $\binom{q}{p} = \frac{q!}{p!(q-p)!}$ = ABBP E,P=0 B! P! B+P < m notors &= p

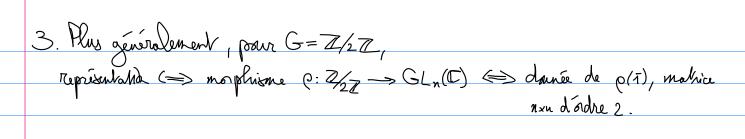
 \sim $u_m - v_m$

où un est la somme partielle du produit de Conchy der séries définisoont exp(111A111) et exp(111B111),
on de la série définissant exp (1/A/1/+1/18/11).
Or exp(A + B) = exp(A) exp(B) (et la convergence est dodue) donc (um-vm) converge vers zero.
On en déduit gre $\ U_m - V_m\ _{m \to \infty}$, donc lin $V_m = \lim_{m \to \infty} V_m = \exp(A + B)$
$\exp(A) \exp(B)$
Proposlan: L'appliant exp est à valeur dans $GL_n(\mathbb{C})$. Plus pricitiment, pour $A \in M_n(\mathbb{C})$, $\exp(A)$ est inversible d'inverse $\exp(-A)$.
Preuve: On commence par le cas particulier évident: pour $O \in M_n(\mathbb{C})$, $f_k(O) = I_n$ pour but k , donc $\exp(O) = I_n$. En général, A et $-A$ commulant, donc $\exp(A - A) = \exp(A) \exp(-A)$ $\exp(O) = I_n$
Proposition: Four bout $A \in M_n(C)$, on a $\exp(\overline{A}) = \overline{\exp(A)}$, $\exp(\overline{A^T}) = (\exp(A))^T$, $\exp(A^+) = (\exp(A))^*$.
Preuve: En exemple pour l'adjoint. En définition,
$\int_{\mathbb{R}} (A^*) \xrightarrow{\mathbb{R} \to \infty} \exp(A^*)$
$ \frac{\partial}{\partial z} = 0 \qquad \frac{(A^{+})^{\frac{1}{2}}}{\partial z!} $
$\left(\frac{\frac{k}{2}}{\frac{A^{\frac{1}{2}}}{2^{\frac{1}{2}}}}\right)^{*} = \left(\int_{\mathbb{R}} (A)\right)^{*} \xrightarrow{\mathbb{R} \to \infty} \left(\exp(A)\right)^{*} \text{for } M \to M^{*} \text{ est}$ contains $\left(\text{appliable } \mathbb{R}\text{-Chairs}\right)$

Considérans la molice A := U+ ding (en 2, ..., en 2 n) U. C'est une matrice hermittenne: A*= (U*dag(ln \, ,.., ln \, n) U) * = U* diag (Pn 2, ..., ln 2n) U = A. Et $\exp(A) = \exp(U^* \operatorname{diag}(hh, ..., hh)U)$ = $\exp\left(U^{-1}\operatorname{diag}\left(\ln\lambda_{1},...,\ln\lambda_{n}\right)U\right)$ $= U^{-1} \exp\left(\operatorname{diag}\left(\operatorname{Gh}_{\lambda_{1}},...,\operatorname{En}_{\lambda_{n}}\right)\right) U$ Or l'exponentielle d'une matrice diagonale diag $(a_1, -, a_n)$ est $\exp(\text{diag}(a_1, -, a_n)) = \text{diag}(\exp(a_1), ..., \exp(a_n))$, (exercice) donc $\exp(A) = U^{-1} \text{diag}(\lambda_1, ..., \lambda_n) U = B$. Danc Hn++ C exp(Hn). Plus précisément, on a le tréoreme suiant (admis, on verra des climents de preuve en TD): Trènème: L'appliable exp: Hn -> Hn++ est un homismorphisme. Remorque: On a déjà montré que expest continue et exp (Hm) = Hatt.


Il reste à montrer que expl est injectile, pris que l'inverse "exp⁻¹! Hatt, Ha est continu. Corblaire: Le grape Grologique $GL_n(C)$ est homemaphe à $U(n) \times \mathbb{R}^{n^2}$. "Treuve": L'homés de la décomposition polaire $\Phi: U(n) \times H_u^{++} \longrightarrow Gln(C)$ peut être composé à droite avec l'exponentielle. (U, P) ~> UP $V: U(n) \times H_n \longrightarrow GL_n(\mathbb{C})$ est un homomorphisme. $(U, M) \longmapsto U \exp(M)$ tt the est un espace vectoriel real de dimension n2.

```
Corollate: Qn(C) est connexe par arcs.
Preuve: GLn(C) est homemaphe à U(n) × 1R<sup>n</sup>/ U(n) est connexe pour arcs
        et 1R n2 est connexe por arcs.
Remarque: Pour n=1, coordonnées polyines z=\pi e^{i\theta}.
Le résultat \exp(H_n)=H_n^{++} correspond à \exp(IR)=IR^+,
   ie. à êvrire \pi = \exp(s) s \in \mathbb{R},


z = \exp(s) \exp(i\theta) s = \ln|z| bien défini

\theta sendement défini module 2\pi.
Théseme: On a exp(AHn) = U(n).
Remarque: Altention ici a n'est pas un homismorphisme, ce n'est même pas injectif.
  Krenve: • G: A & AHn, also (exp(A)) = exp(A*)
                                            =\exp(A)^{-1}
               donc exp(A) & U(n).
               Donc exp(AHn) C U(n)
          · Soit BEU(n). Par réduction des matrices unitaires,
             B = U^* diag \left(e^{i\theta_n}, \dots, e^{i\theta_n}\right) U and U \in U(n).
             Posons A:= U* diag (iOn,..., iOn)U,
              alors A^+ = U^+ \operatorname{diag}(-i\theta_1, ..., -i\theta_n)U = -A donc A \in AH_n
              er \exp(A) = U^{-1} \exp(diag(i\delta_{n_1,...,i}\delta_n))
= U^{-1} diag(\exp(i\delta_n),...,\exp(i\delta_n))U = B.
Remorgne: On a fait cette dernière sechte dans le cos complexe. On peut sous problème l'applique dans le cos réel. - à faire en exercice.
On reprende à 10h35 sur le TD du chapitre 3_
on reviendre sur le TD du chapitre 2 jeudi
```

Chapitre 4: Représentations linéaires de groupes fini

à un marrière vers GL, (IK).
à un morphisme vors $GL_n(IK)$. * Li C_1 et C_2 sont deux morphismes $G \longrightarrow GL_n(IK)$, les représentations associées sont équivalentes soi elles sont <u>conjuguées</u> , $c-a-d$: $\exists h \in GL_n(IK)$ by $\forall g \in G$, $he_n(g)h^{-1} = e_2(g)$.
associées sont équislentes soi elles sont conjuguées, c-à-d:
TheGL_(IK) & AgeG, her(g)h-1= e2(g).
Terminologie: La dimension de V est applée le degré de la représentation.
Dans ce cours, on considére uniquement (sauf pour des remarques culturelles) le cas où: · G est un groupe fini · IK= C
le cas où: · G est un groupe fini
• IK= C
· les représentations sont de degré fini.
Exemples:
1. Représentation Kiliale. Pour tent groupe G et tout espace vectoriel V, le morphisme trivial p:G-SL(V)
our vous groupe & et vous espace vecuouer V, la momphisme mivial Q: G -> GIV)
définit une resprésentation, appelée représentation trivole sur V.
of the respective resp
· Une représentation est équivalente à la resprésentation bijuille sur V,
· Une représentation est équivalente à la resprésentation triviale sur V, soi c'est la représentation hividle sur V2 avec V2 isomorphe à V1.
· On appelle représentation hiviale de degré n la représentation kindle sur C".
2, G=Z/2Z P1: G -> GL2(C) P2: G -> GL2(C)
$ \hat{k} \longrightarrow (-1)^{k} I_{2} \qquad \hat{k} \longmapsto \begin{pmatrix} (-1)^{k} & 0 \\ 0 & 1 \end{pmatrix} $
Q3:G > GL2(C) sont des morphismes, donc déphidéent du
Teprésentations. C2 et P3 sont équitalentes
$Q_3:G\longrightarrow GL_2(C)$ sont des morphismes, danc déphidoent des $E_1 \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & (-1)E \end{pmatrix}$ représentations. Q_2 et Q_3 sont équipalentes mais pas Q_1 et $Q_2 \leftarrow \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ n'est par conjugué à $\begin{pmatrix} -1 & 0 \\ 6 & 1 \end{pmatrix}$

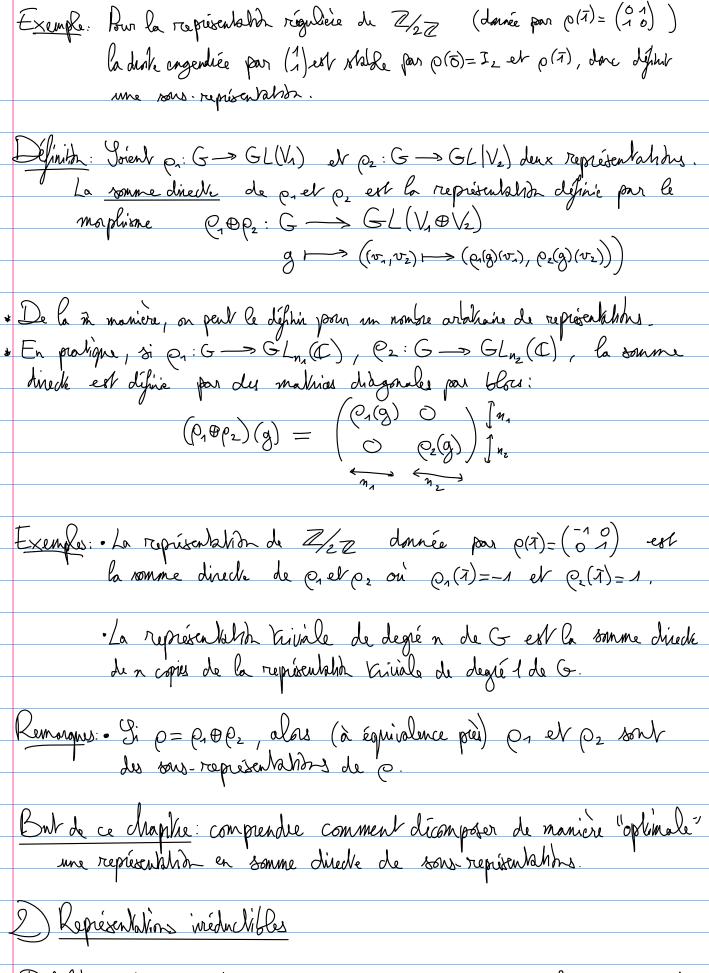
4. Pour G=Gn, on a déjà un un morphisme remargnable c:Gn > GLn(C) donné pour l'isomorphisme entre Gn et le sous-groupe des mothères de permutation.

5. <u>Keprésculations</u> de permutations.

Li G agt sur un ensemble fin {1,..., n }, on peut construire une reprisentation de G dans (ⁿ comme sout:

 $n (e_1, -, e_n)$ boose Mandard de C^n on pose $o(g) \left(\sum_{i=1}^n z_i e_i \right) = \sum_{i=1}^n z_i e_i$

(p(g) est l'isomorphisme qui envoie la bosse (e1,-, en) son la bosse (eg., eg.2, ..., eg.n))


(se rethouse du point 4 en composant le morphisme G -> En avorié à l'action de Gon f1,-, n 3 avec l'isomorphisme entre En et les malices de permulah des)

G. Représentation régulière
Un gronpe fini Gogt sur luimème par multiplications à ganche.
Le représentation de permuttion associée (de degré #G) est appelée la reprisentation régulière de G.

7. Pour G= Z/2Z, la représentation régulière est donnée par $O(\overline{1}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

Définition: Sort 0: G -> GL(V) une représentation de G. Si WCV est un ser de Vollible por lons les p(g) pour gEG (on dina stable par p(G)), alas on obtient une représentation dans W par Q: G > GL(W).

Les représentations détenues de cette namiere sont appelées sous-représentations de p

Définhère: Une représentation Q: G -> GL(V) est inréductible si les seuls seu de V stables pour Q(G) sont {0} et V.

	Exemple (immédial mais fondamental). Toute représentation de degré 1 est irréductible. Soit $c: C \longrightarrow GL(V)$ de degré 1, c-à-d d'in $V=1$.
	Les seuls ser de V sont 20% et V (par dineasion). Donc la condition de
	la définition est satisfante.
	Proposition: Soit Gun groupe fini déstien. Une representation de Gest irriductible soi elle est de degré 1.
	irriductible son elle est de degré 1.
	La preuve repose sur le lemme:
	Lemme: Soit G un groupe fini et $\rho:G \longrightarrow GL_n(C)$ un morphisme. Aby pour $bnt g \in G$, la motrice $\rho(g)$ est diagonalisable.
	pour lont g∈G, la notrice O(g) est diagonalitable.
	Prenie Lu Cemme: Soit gEG, soit on l'ordre de g. Comme p est un
	thense In lemme: Soit $g \in G$, soit on l'ordre de g . Comme g est un mouphione, $g(g^m) = (g(g))^m = I_m$, donc le physième $x^m - 1$ annule $g(g)$. Autheneut dit, le physième minimal de $g(g)$ divise $x^m - 1$.
	Q(g). Authement dit, le polynôme minimal de p(g) divise x^m-1 .
	Or XM-1 est scirdé à racines simples (dans c), donc le phynôme minimel de $Q(q)$ autri.
	e g mar.
	Prienve de la proposition: Soit p: G -> GLn(C) me représentation de G.
	Par le lemme, vontes les matrices p(g) tout diagnalisables. Comme Gest
	abélin, ces makries commutent, sonc elles sont simultanément diagonalitables.
	Il exile une losse de C" formée de vecleurs communs à chaque ((g).
	Chocure des drokes engendrées par un de as vedeurs propres est stable par p(G),
	Chocune des drokes engendrées par un de as vedeurs propres est phobe par $O(G)$, donc définissent des sons représentations $\neq \{0\}$, C^{n} sons j oi $n=1$. \square
	Faux sur un caps gnelcongne!
•	Foux sur un caps quelconque! For exemple, $o: \mathbb{Z}/_{2\mathbb{Z}} \longrightarrow GL_{2}(\mathbb{K})$ est iniductible comme reprisedable $\overline{k} \longmapsto R_{2\pi k}$
	$R \longrightarrow R_{2\pi k}$
	5

	Un résultat fondamental de Prêvie des représentations:	
	Lomme de Schur: Soient O.: G->GL(V) et O.: G->GL(V2) dux	
	représentations irréductibles de G. Soit & V1 -> V2 une application lihéaire	
	telle gre $\Phi \circ P_1(g) = P_2(g) \circ \Phi$ pour but $g \in G$	
	Alors: 1. Si & n'est pos identiquement mulle, alors & est un isomorphisme.	
	2. si de plus $Y_1 = V_2$, alors if existe $\lambda \in \mathbb{C}^+$ to $\phi = \lambda \operatorname{Id}_{V_1}$.	
	2, 31 or box 1, 12 / 100000 1. 3. 8.00 1. 10 mg	
	Preuve: 1 Le noyan de d'est un seu de V1, otale par Q1(G) d'après 8)
	Si o n'est pas identiquement nulle, Kor o + V1	
	01 extirrédachèle, donc Ker 0= {0}. Donc o extinjedite.	
	· L'image de trest un seu de V2, stable por O2(G) d'après ®.	
	Compre C2 eN irréductible, $\Phi(V_1)$ est soit $\{0\}$, soit V_2 .	
	Si ϕ n 'est pas identifrement rulle, $\phi(V_1) \neq \{0\}$, donc $\phi(V_1) = V_2$.	
	Donc & ext surjectile.	/
	O	
	2. Joh > € C. En appliquent le prinier poult à l'appliation \$-> I	J
(gui sal	2. Soit > € C. En appliquant le previer pout à l'appliation Φ-> Il vispait ③), on a : soit Φ-> Idy est un isomorphisme,	
,	Sort b- > Idy est dentiquement rulle.	
	Prisque & odnet an nois me valen propre (on haraille sur	C
	Prisque & odnet an nois une valen propre (on travaille un il existe un xEC & d-> Idy, ne voit pas un isonorphisme	•
	Donc $\Phi = \lambda Id_{V_A}$ pour ce λ .	
	V/ 1	1
	3) Décomposition en représentations irrêductibles.	
	·	
	Thérène: Toute reprisentation de G est une somme directe de reprisentations	
	Thérene: Touk reprisentation de G est une somme directe de reprisentations intiductibles. (dans le codre énnie plus lèt Gfini, IK= C, requientation de dyré fini)	
	Prense: Je suffit d'appliquer récursivement le résultat ruisant.	
	$n \sim \mu$.	

Lemme de Marchhe: Soit Q:G->GL(W) une représentation, et V1
un sons-espace stable par Q(G), V, ≠ (0), W. Alors il exible un seu V2 de W,
·
Q(G)-stole, El que W= V1 @V2, et 0= 0 V2.
Preuve du lemme de Moschbe:
Preuve du lemme de Maschbe: Chrisissons une boase de W pour identifier ρ avec un morphisme $\rho:G \to GL_n(C)$ (où $n=\dim W$).
Considérons la matrie: H:= \(\sum_{geG} \) erg)* erg)
geG (3) P. 3
C'est un élément de Hn+ (c-à-d c'est une mobile hermisseure définie possible).
En effet, chaque Verme de la somme l'est (on a déjà un ce naisonnement dans
En effet, chaque Verme de la somme l'est (on a dijà un ce raisonnement dans la preuve de la déc. plaire) et la somme reek dans H++ (cor H++ est un con
1.04/04/
L'espace Nac nevo donc muni de la some heuntleme définie portire (X,Y) → X*HY.
Cette forme est invariante par o(G):
L'espace $N \simeq \mathbb{C}^n$ est donc muni de la forme hermitienne définie positive $(X,Y) \mapsto X^*HY$. Cette forme est invariante par $\wp(G)$: $\forall h \in G$, $\forall X,Y \in \mathbb{C}^N$, $\Phi(\wp(h)X,\wp(h)Y) = (\wp(h)X)^*H(\wp(h)Y)$ $= \sum_{g \in G} X^* \wp(g)^* \wp(g) \wp(h) Y$
$=>$ $\times^* \circ (2)^* \circ (3) \circ (3)$
&FG
= > X* (0(gR)) (0(gR)) (1) (1) (1)
$= \underbrace{\sum_{g \in G} x^* (gg)^* (gh)}_{g \in gh}$ $= \underbrace{\sum_{g \in G} x^* (g)^* (g)^$
$= \underset{g \in G}{\geq} \times (g)(g) \gamma$
$= X^* H Y = \Phi(X, Y).$
(en d'antres tennes, oblient dans le groupe unitaine U(4) de 4).
Danc si Vi est un ser de W Nable par O(G), alors son orthogonal
por rapat à destaussi stable por p(G).
Donc si V_1 est un sev de W Nable par $Q(G)$, alors son otherwood par raynat à Φ est aussi stable par $Q(G)$. Si on $Q(G)$ on a line $Q(G)$ et $Q(G)$.
A J Trivelle le orte faux Dans de la constantina
Par exercis de par pour la groupe sign.
Le résultat ext fanx pour un groupe infini. Par exemple: Q: Z -> GL2(C) définit une représentation de Z de degré 2. le -> (1/6)
La droke engendrée par (3) est $o(Z)$ -skable, mais n'a pas de supplémentaire $o(Z)$ -skable.

_	4 Caraderes
	Définith.: You $\rho: G \longrightarrow GL(V)$ une représentation de G . Le corroctère de ρ est la fonction $\mathcal{X}_{\rho}: G \longrightarrow \mathbb{C}$ $g \longmapsto \operatorname{tr}(\rho(g))$
	Le conochère de p est la fonchión $\chi_0:G\longrightarrow \mathbb{C}$
	$g \longrightarrow tr(o(g))$
	_
	Exemples: 1. Si $Q: G \longrightarrow GL_1(C) = C^*$ représentation de degré 1, alors $\chi_e = Q$.
	2. Pour la représentation du 767 (0(7)=(01)) on a
	2. Pour la représentation régulière de \mathbb{Z}_{2} \mathbb{Z}_{2} \mathbb{Z}_{2} \mathbb{Z}_{3} \mathbb{Z}_{4} \mathbb{Z}_{5} \mathbb{Z}_{6} \mathbb{Z}_{5} \mathbb{Z}_{6} \mathbb{Z}_{7} Z
	()
	3. L'image de l'éliment neule par 20 est taijours égale au degré de la représentes
	4. Pour une représentation de permutation:
	si G agit sur $\{1, -, n\}$ et $\rho: G \longrightarrow GL_n(\mathbb{C})$ est la repréventable de permutation
	associée, on a: $\chi_{\rho}(g) = \text{nombre de poils fixes par g dans }\{1,,n\}$
	$(rayle (g)(e_i) = e_{g,i})$
	5. En portialier, pour la <u>représentation régulier</u> de G (associée à l'actor de G sur lui nême pour multiplisation à ganche), on a $\chi_0(g) = 0$ pour $g \neq e$,
	et x () - ++ C
	$\partial X_{\rho}(e) = \#G$.
	Propriété: Soit ours représentation et X, son caractère. La soulla Xo:G>
	est novariante pour conjugaison: $\forall q, h \in G$ $\chi_0(qhq^{-1}) = \chi_0(h)$.
	Propriélé: Soit pune représentation et χ_p son caractère. La fonction $\chi_p:G \rightarrow est$ invariante pour conjugaison: $\forall g,h\in G$, $\chi_p(ghg^{-1})=\chi_p(h)$. (c'est une conségnence immédiate de l'invariance de la truce par conjugaison).
	Consignence: Deux représentations équivalentes ont <u>le nome</u> corochère.
•	Terminalgie: On appelle fonctions centrales les fonctions G-> C qui sont invariantes pour conjugacion.
	invariantes par conjugation.
	· ·

Remorque: Si en connaît les classes de conjugaison de G , alors pour déléminer complètement $X_{\mathfrak{p}}$, il suffit de le colculer our un représentant de chaque classe.
honorlion: Sout pr: G -> GLn(C) et pr: G -> GLn(C) deux représentations,
Proposition: Solut $\rho_1: G \to GL_{n_1}(\mathbb{C})$ et $\rho_2: G \to GL_{n_2}(\mathbb{C})$ deux représentations, alors $\chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}$.
Prende directe en exercia.
5) Thérie des carachères: résullake
Buli: -> montrer que le coractère d'une resprésentation la détermine complètement à équiralence près.
a equivalence pres.
→ la décomposition en représentations irréductibles se détermire "facilement" à l'aide des caractères.
the Country of the Co
On munit l'espace vectoiel complèxe des fonctions de G dans C de
la some hermilienne définie postive:
$(f f') := \frac{1}{\#G} = \frac{1}{g \in G} = \frac{1}{g} =$
Exercice: vérjoir que c'est bien une forme hormitéence déphie positive.)
Résullate principanx de la Présis des caractères.
A-Sur les représentations irréductibles
Thérène: Soient pet π deux représentations irréductibles de G . 1. Si en ext pas équivalente à π , alors $(\chi_p \chi_p) = 0$
2. Si e est équialente à π , als $(\chi_e = \chi_{\pi} e t)$ $(\chi_e \chi_e) = 1$

B-Sur la décomposition en regrésentations irréductibles
Sol p: G -> GL(V) une regrésentation.
Daprès la rechin 3, il existe des sons-espaces V1, -, Vm de V, stables par p (G
Sol e: G -> GL(V) une représentation. D'après la section 3, il existe des sons-espaces V1, -, Vm de V, stables par p(G) tels que e= e/v, 0 0 e/v, et irriductible.
Soient On Of des représentations irréductibles de G, non équiplentes deux
Soient en Che des représentations irréductibles de G, non équiplentes deux à deux, telles que chaque et, (pour 15 m) est équiplente à l'une des es (pour 15 j6 le).
des 6 (bor 1 < j < f2)
On note a le nombre de i tels gre $Q _{V_1}$ soit équivalente à Q_j .
On a donc $e^{-p_1 \oplus \cdots \oplus e_1} \oplus e_2 \oplus \cdots \oplus e_k$
a, fois
on évrit er l'1 & l'2 & & la et en aprelle aj la
mullipliate de ci dans c.
rouring de Cy dans (S.
Thereme: 1, Pour Vail j , $a_j = (\chi_{e_i})$.
En particulier, si deux resprésentations ont sû coractère, alas elles
son équillemes.
2. On a $(\chi_{\rho} \chi_{\rho}) = \sum_{j=1}^{k} a_{j}^{2}$.
En porticulier, c'et irréductible si et renlement si (xp/xp)=1

C-Sur la représentable régulière Thireme: Toute classe d'équivalence de représentations irréductibles de G a un représentant G, qui apparait comme sons représentation de la représentation réguliere G de G. De plus $(X_R | X_{P_0})$ est égal au degré de G. En particulèr, l'ordre de G est agal à la somme des degrés an Carré des classes d'équivalences de représentations irrêductifles de G. Cordlaire: Tout groupe fini a un rantre fini de représentations inéductibles à équisolère pris. D-Nombre de représentations instructibles Thérène: Il y a autout de clases d'équiplence de représentations irriductibles de G que de closes de conjugacion dans G. on ne le pronvera pas, prenve détaillée par étapes dans le dirnier exo duTD. 6) Table des caraclères Étant touné les résultate de la thérie des caractères, on peut résumer toute l'information sur les représentations de G dans un Valdeau appelé table des caractères: les Cignes tont indexées par les caractères des reprétentations irréductibles de 6. Les colonnes vont indexées par les classes de conjugaison de 6 (on inclue en général dans l'en vote de la clonne le cardial #2 de la classe de conjugaison)

-> Dans la case à la ligne indexce pour le caractère 2
et à la colonne indexee par la classe de carjugaison E,
On place le nontre complexe $\mathcal{X}(x)$ pour $x \in \mathcal{E}$ (c'est indépendent
du clinix de x & E
par inviana pour conjugation
^
En rénéral c'est ties difficil à remolir.
En général, c'est ties difficile à remplir. Il fandrait en principe déterminer vontes les classes de conjuguism et toutes les resprésablishes inéductibles et vous leurs caractères.
représentables inéductifies et tou Ceurs caractéries
Par contre, il y a certaines propriétés qui aident. On y reviendre en TD.
Par convention: on met l'aignois le caractère 11 de la représentation hièville du degré 1 sur la première ligne. Donc vous les coffe de la 100 ligne vont égant à 1.
de digié 1 sur la pre ligne. Donc Vous les caffe de la 100 ligne vont again à 1.
la premiere channe correspond à la dosse de conjuguien se 4 de l'élément
neuhe e. Done les caffe de la première chonne sont les dignés
des représestations irréductibles.
1

7)	Théorie	dis	coracteres	:	B7lW/b/S
					000

Lemme 1: Soit O:G-> GLW) une représentation, et X, son caractère. Soit 11:G -> C la fonction contrante égale à 1 (caractère de la représentation triville de deré 1). Alors $(\chi_{\rho} \mid 1) = \dim (\vee^G)$

où VG est le seu de V joinné des vecleurs intérauls par Q (ve/6 = 4geG, pg)(v)=v)

France: Soit P:V-V l'endomorphione de V dijhi par P:= 1 5 0(9)

On a $(\chi_{\rho}|1) = \frac{1}{\#G} \sum_{g \in G} \chi_{\rho}(g) \overline{1}(g) = \frac{1}{\#G} \sum_{g \in G} \text{tr}(\rho(g)) = \text{tr}(P)$

L'endonaphisme P solisfait P.P=D:

P.P = #G & GCG(8) #G EG P(h)) P(8) P(h) = P(9h) = \frac{1}{46} \frac{7}{966} \frac{1}{46} \frac{7}{66} \frac{1}{66} \f = #G = #G = P(B)

Il s'agit donc d'un projecteur: V= Ker(P) & Im(P) et P(x+y)=y n'xettor(P) y ∈ In(P)

La trace d'un projecteur est égale à la dimension de son image. Il reste à monther que Im(P) = VG.

MENCE SOCIONS = A AS

Premier inclusion: in $y \in V^G$ on a $P(y) = \frac{1}{\#G} \sum_{g \in G} p(g) \times y = y$ done $y \in Im(P)$

3	Deuxone inclusion: siye Im(P), sof $\tilde{y} \in V \neq P(\tilde{y}) = y$. Also $\forall h \in G_1$ on a $P(h)(y) = o(h)(P(x)) - 1 = 0$ (ha) $(x^2) - P(\tilde{y}) = x$
	$e^{(k)}(y) = e^{(k)(P(y))} = \frac{1}{\#G} \sum_{g \in G} e^{(kg)}(y) = P(y) = y$
4,	montre les résultats our le produit scalaire hermilier de caractères avec 11.
	Comment s'y ramener?
	Sient Vet W deux C-eu (de dh finie). On nhe L/V,W) le C-eu formé
	Scient Vet W deux C-eu (de din finie). On nove LIV, W) le C-eu formé des appliations linéaires de V dans W.
-	Définition: Étant données deux représentations $c:G \to GL(V)$ et $\pi:G \to GL(W)$, on définit une représentation $L(e,\pi):G \to GL(L(V,W))$ en possure
	on définit une représentation $L(e,\pi): G \longrightarrow GL(L(V,W))$ en posant
	$pan geG, \qquad \angle(Q,\pi)(g): \angle(V,W) \longrightarrow \angle(V,W)$
	$\qquad \qquad $
-	emme 2: Le corochère de $L(\rho,\pi)$ est donné par $\mathcal{L}_{(\rho,\pi)}(g) = \mathcal{X}_{(g^{-1})}\chi_{\pi}(g)$.
	Prenve: Il s'agit d'un calcul de Viace. (de l'endomaphisme D)
	Prenve: Il s'agit d'un calcul de Viace. (de l'endomaphisme D) Pour cla, on va fixer une bosse de L(V,W).
	Dalord, soit (c1,, en) une bosse de V et soit (f1,, fm) une bosse de W.
	Caci permet de penser à L(V,W) comme l'espace vedhiel des nothias nxm.
	On note (Eij), Lien les moltices élémentaires correspondantes:
	$E_{ij}: \bigvee \longrightarrow W$
	$\frac{2}{k_{z}} \operatorname{geg} \longrightarrow \frac{1}{2} \cdot 1$
	Elles forment une bosse de L(V,W).
	Pour geG, $\mathcal{X}_{L(p,\pi)}(g)$ est la kace de l'application $L(V,W) \longrightarrow L(V,W)$, $\varphi \longmapsto \pi(g) \circ \varphi \circ \varrho(g^{-1})$
	donc la somme pour bout (iij) E {1,, n} x {1,, n} des cofficients de E; j dans L(P, n)(g) (E; j) = T(g) E; j o P(g-1).

Notions
$$(e(g^{-1})_{k,l}$$
 les coeffs de $e(g^{-1})_{eGL(V)}$ dans la bosse $(e_{1|-1}e_{n})$ $(\pi(g))_{k,l}$ les coeffs de $\pi(g)_{eGL(W)}$ dans la bosse $(f_{1|\cdots 1}f_{m})$

50 a:

$$\left(\pi(g) \circ E_{i,j} \circ \varphi(g)\right)(e_{i}) = \left(\pi(g) \circ E_{i,j}\right) \left(\sum_{\ell=1}^{n} (\varphi(g^{-1}))_{\ell,i} e_{\ell}\right)$$

$$= \left(\pi(g)\right) \left((\varphi(g^{-1}))_{i,j} f_{g}\right)$$

$$= \left(\varphi(g^{-1})\right)_{i,j} \sum_{\ell=1}^{n} (\pi(g))_{\ell,i} f_{\ell}$$

Donc le caff de Eij dans TGO Eijo p(4-1) est égal à (p(4-1)), (TG))

On a power concluse,
$$\chi_{L(\rho, \overline{k})}(g) = \sum_{i=1}^{n} \sum_{j=1}^{m} (\rho(g^{-1}))_{A_{i}1} (\overline{\pi}(g))_{A_{i}1}$$

$$= \sum_{i=1}^{n} (\rho(g^{-1}))_{A_{i}1} (\overline{\pi}(g))_{A_{i}1}$$

$$= \operatorname{tr}(\rho(g^{-1})) \operatorname{tr}(\pi(g))$$

$$= \chi_{\rho}(g^{-1}) \chi_{\pi}(g).$$

Lemme 3 (propriété à connaître dus caractères): Soit ρ une repréteulation, χ_{ρ} son Caractère. Alors $\forall g \in G$, $\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$.

Preuve: Soit $g \in G$. Notons $\lambda_1,...,\lambda_n$ les voleurs propues de $\varrho(g)$ (répétées selon eurs multiplicités). Alor $\chi_\varrho(g) = t_1(\varrho(g)) = \lambda_1 + \cdots + \lambda_n$

er
$$\mathcal{X}_{\rho}(\bar{g}^{-1}) = h(\bar{\rho}(g)^{-1}) = \frac{1}{\lambda_{\lambda}} + \cdots + \frac{1}{\lambda_{\lambda}}$$

Les valeurs propres de Q(g) sont de module 1: on a déjà un (pour les respiréed de groupes atéliens fini): si g est d'ordre m (fini cor G est un groupe fini), alors le polynôme minimal de Q(g) divise X^m-1 , dont les taches sont les tracines m-iemes de l'unité, toutes de module 1.

Théoreme C: Soit π la représentation régulière, et ρ une représentation irréductible, on a $(\chi_{\Pi}|\chi_{\rho})=\deg(\rho)$. Preuve: On a déjà colalé $\chi_r: \chi_r(id) = \#G$ et $\chi_r(g) = 0$ pour $g \neq id$. Pour Voule représentable π de G, on a: $(\chi_{\pi} | \chi_{\pi}) = \frac{\chi_{\pi}(id) \chi_{\pi}(id)}{\#G}$ $=\overline{\chi_{\pi}(\lambda)}$ = leg(1T) = dy(TT) Exercice: Appliquer intelligement les résultats ci-dessus pour rotronver tous les énoncés de la remaine dernière. Pour la partie D, la prenue est détaillée par chipes dans la feuille de TD. fin du cours. On reprend à 9h35, exercices 6,7,8 du TD.