Contrôle continu final

Exercice 1. 1. Démontrer le théorème de réduction des matrices symétriques réelles.

- 2. Démontrer l'existence d'une unique racine carrée symétrique réelle positive pour toute matrice symétrique réelle positive.
- 3. Démontrer la décomposition polaire pour $GL_n(\mathbb{R})$.

Exercice 2. On considère d'abord l'action de $\mathrm{GL}_2(\mathbb{C}) \times \mathrm{GL}_2(\mathbb{C})$ sur $\mathrm{M}_2(\mathbb{C})$ par équivalence :

$$(A, B) \cdot M = AMB^{-1}$$

- 1. Justifier que cette action est continue.
- 2. Décrire les orbites pour cette action.
- 3. Quelle est l'adhérence de l'orbite de I_2 ? (le démontrer)

On considère maintenant l'action de $SL_2(\mathbb{C})$ sur $M_2(\mathbb{C})$ par conjugaison :

$$A \cdot M = AMA^{-1}$$

- 4. Justifier que cette action est continue.
- 5. Décrire les orbites pour cette action.
- 6. Lesquelles sont compactes? (le démontrer)

On considère maintenant le sous-espace vectoriel $\mathcal{V}\subset M_2(\mathbb{C})$ formé des matrices de trace nulle :

$$\mathcal{V} := \operatorname{tr}^{-1}(\{0\}).$$

- 7. Montrer que \mathcal{V} est stable par l'action de $\mathrm{SL}_2(\mathbb{C})$ par conjugaison.
- 8. Montrer que le morphisme associé à l'action factorise en un morphisme injectif de $PSL_2(\mathbb{C})$ vers $GL(\mathcal{V})$.

On note maintenant ι ce morphisme injectif, on veut expliciter son image. On note $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- 9. Déterminer l'image de E, F et H sous l'action d'un élément $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C})$.
- 10. En déduire une description matricielle de l'image de ι .
- 11. Montrer que ι est continue (où la topologie au départ est la topologie quotient, et la topologie à l'arrivée est la topologie induite).
- 12. Montrer que $\iota|_{\mathrm{PSU}(2)}$ est un homéomorphisme de $\mathrm{PSU}(2)$ sur son image, où $\mathrm{PSU}(2)$ est l'image de $\mathrm{SU}(2)$ par le quotient $\mathrm{SL}_2(\mathbb{C}) \to \mathrm{PSL}_2(\mathbb{C})$.

Exercice 3. Pour toute matrice $A \in M_n(\mathbb{R})$, on associe l'ensemble

$$O(A) := \{ M \in GL_n(\mathbb{R}) \mid M^T A M = A \}.$$

- 1. Montrer que pour tout $A \in M_n(\mathbb{R})$, O(A) est un sous-groupe fermé de $GL_n(\mathbb{R})$.
- 2. Déterminer toutes les matrices A pour lesquelles $O(A) = GL_n(\mathbb{R})$. (On pourra utiliser les matrices élémentaires par exemple.)
- 3. On considère maintenant le cas n = 3 et $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Soit $X := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & \sqrt{3} & 0 \end{pmatrix}$.
 - (a) Calculer $\exp(\lambda X)$ pour tout $\lambda \in \mathbb{R}$. Vérifier que $\exp(\lambda X) \in O(A)$ pour tout $\lambda \in \mathbb{R}$.
 - (b) Le sous-groupe O(A) est-il compact?
 - (c) En utilisant des matrices par blocs (dont on précisera les tailles), montrer que O(A) est homéomorphe à $\mathbb{R}^2 \times \mathbb{R}^* \times O(2)$. Le groupe O(A) est-il connexe?

Exercice 4. On considère la matrice
$$S := \begin{pmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{pmatrix}$$
.

Montrer que $\exp(S) \in \mathcal{O}(3)$, déterminer de quel type d'isométrie il s'agit ainsi que ses données caractéristiques (par ex. axe et angle non-orienté). On ne demande pas de calculer l'exponentielle explicitement.

Exercice 5. Montrer que la sphère unité \mathbb{S}^{n-1} est homéomorphe à G/H, où $G = \mathrm{SO}(n)$ et H est le sous-groupe de $\mathrm{SO}(n)$ formé par les matrices diagonales par blocs $\begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$ avec $A \in \mathrm{SO}(n-1)$.